具有高脱氧和裂解能力的改性镍基金属有机框架 (Ni-BTC),用于在低催化剂用量下生产喷气燃料范围内的碳氢化合物混合物

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-06-24 DOI:10.1021/acs.iecr.4c00696
Yang Xu, Hao Guo, Yuxiang Mao, Lei Qian, Weijuan Yang and Jun Cheng*, 
{"title":"具有高脱氧和裂解能力的改性镍基金属有机框架 (Ni-BTC),用于在低催化剂用量下生产喷气燃料范围内的碳氢化合物混合物","authors":"Yang Xu,&nbsp;Hao Guo,&nbsp;Yuxiang Mao,&nbsp;Lei Qian,&nbsp;Weijuan Yang and Jun Cheng*,&nbsp;","doi":"10.1021/acs.iecr.4c00696","DOIUrl":null,"url":null,"abstract":"<p >To enhance deoxygenation and cracking performance of microalgal biodiesel to produce a jet fuel-range hydrocarbon blend, an efficient Ni-carbon composite was prepared by pyrolyzing Ni-based metal–organic frameworks (Ni-1,3,5-benzenetricarboxylate, Ni-BTC) for catalytic conversion with a substantially reduced catalyst dosage. Coordinated Ni ions in the Ni-BTC precursor were converted into highly active Ni nanoparticles due to catalyst pyrolysis, while an increased specific surface area of the catalyst facilitated mass transfer in microalgal biodiesel conversion. X-ray absorption fine structure analysis confirmed the formation of Ni–Ni active sites, while density functional theory calculations revealed that the C═C bond was the initial site for the cracking reaction of long-chain fatty acids. The selectivity of jet-fuel-range products in methyl palmitate conversion over the Ni@C<sub>500</sub> (Ni-BTC pyrolyzed at 500 °C) catalyst increased to 71.46% with a substantially reduced catalyst dosage (the mass ratio of catalyst to reactant was 1:200). The Ni@C<sub>500</sub> catalyst exhibited excellent performance with high selectivity (71.6%) and conversion efficiency (97.46%) in deoxygenation and cracking of microalgal biodiesel for jet fuel-range hydrocarbon blend production.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Ni-Based Metal–Organic Frameworks (Ni-BTC) with High Deoxygenation and Cracking Ability for Production of a Jet Fuel-Range Hydrocarbon Blend at a Low Catalyst Dosage\",\"authors\":\"Yang Xu,&nbsp;Hao Guo,&nbsp;Yuxiang Mao,&nbsp;Lei Qian,&nbsp;Weijuan Yang and Jun Cheng*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.4c00696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To enhance deoxygenation and cracking performance of microalgal biodiesel to produce a jet fuel-range hydrocarbon blend, an efficient Ni-carbon composite was prepared by pyrolyzing Ni-based metal–organic frameworks (Ni-1,3,5-benzenetricarboxylate, Ni-BTC) for catalytic conversion with a substantially reduced catalyst dosage. Coordinated Ni ions in the Ni-BTC precursor were converted into highly active Ni nanoparticles due to catalyst pyrolysis, while an increased specific surface area of the catalyst facilitated mass transfer in microalgal biodiesel conversion. X-ray absorption fine structure analysis confirmed the formation of Ni–Ni active sites, while density functional theory calculations revealed that the C═C bond was the initial site for the cracking reaction of long-chain fatty acids. The selectivity of jet-fuel-range products in methyl palmitate conversion over the Ni@C<sub>500</sub> (Ni-BTC pyrolyzed at 500 °C) catalyst increased to 71.46% with a substantially reduced catalyst dosage (the mass ratio of catalyst to reactant was 1:200). The Ni@C<sub>500</sub> catalyst exhibited excellent performance with high selectivity (71.6%) and conversion efficiency (97.46%) in deoxygenation and cracking of microalgal biodiesel for jet fuel-range hydrocarbon blend production.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c00696\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c00696","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高微藻生物柴油的脱氧和裂解性能以生产喷气燃料级碳氢化合物混合物,研究人员通过热解镍基金属有机框架(Ni-1,3,5-苯三羧酸镍,Ni-BTC)制备了一种高效的镍碳复合材料,用于催化转化,同时大幅降低了催化剂用量。由于催化剂热解作用,Ni-BTC 前体中的配位镍离子转化为高活性镍纳米颗粒,而催化剂比表面积的增加促进了微藻生物柴油转化过程中的传质。X 射线吸收精细结构分析证实了 Ni-Ni 活性位点的形成,而密度泛函理论计算则揭示了 C═C 键是长链脂肪酸裂解反应的初始位点。在大幅减少催化剂用量(催化剂与反应物的质量比为 1:200)的情况下,Ni@C500(Ni-BTC 高温分解于 500 °C)催化剂在棕榈酸甲酯转化过程中对喷气燃料级产品的选择性提高到 71.46%。Ni@C500 催化剂在微藻生物柴油的脱氧和裂解过程中表现出卓越的性能,具有高选择性(71.6%)和高转化效率(97.46%),可用于生产喷气燃料范围内的碳氢化合物混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Ni-Based Metal–Organic Frameworks (Ni-BTC) with High Deoxygenation and Cracking Ability for Production of a Jet Fuel-Range Hydrocarbon Blend at a Low Catalyst Dosage

To enhance deoxygenation and cracking performance of microalgal biodiesel to produce a jet fuel-range hydrocarbon blend, an efficient Ni-carbon composite was prepared by pyrolyzing Ni-based metal–organic frameworks (Ni-1,3,5-benzenetricarboxylate, Ni-BTC) for catalytic conversion with a substantially reduced catalyst dosage. Coordinated Ni ions in the Ni-BTC precursor were converted into highly active Ni nanoparticles due to catalyst pyrolysis, while an increased specific surface area of the catalyst facilitated mass transfer in microalgal biodiesel conversion. X-ray absorption fine structure analysis confirmed the formation of Ni–Ni active sites, while density functional theory calculations revealed that the C═C bond was the initial site for the cracking reaction of long-chain fatty acids. The selectivity of jet-fuel-range products in methyl palmitate conversion over the Ni@C500 (Ni-BTC pyrolyzed at 500 °C) catalyst increased to 71.46% with a substantially reduced catalyst dosage (the mass ratio of catalyst to reactant was 1:200). The Ni@C500 catalyst exhibited excellent performance with high selectivity (71.6%) and conversion efficiency (97.46%) in deoxygenation and cracking of microalgal biodiesel for jet fuel-range hydrocarbon blend production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Illumination Invariant Automated Drop Size Estimation Catalytic CO2 Capture Performance of a MEA-EAE-DEEA Trisolvent in a Hot Silicon Oil-Based Pilot Plant CCU-Llama: A Knowledge Extraction LLM for Carbon Capture and Utilization by Mining Scientific Literature Data One-Pot Coating of Ceramic Powders by Exfoliated Boron Nitride Layers with a Dense CO2 Medium and Ultrasound-Aided Mixing Ammonium Chloride Powder Feeding for the Simultaneous Reduction of NOx and Oxidation of Hg0 in the SCR Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1