全基因组多基因风险评分预测胶质瘤风险和分子亚型。

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2024-10-03 DOI:10.1093/neuonc/noae112
Taishi Nakase, Geno A Guerra, Quinn T Ostrom, Tian Ge, Beatrice S Melin, Margaret Wrensch, John K Wiencke, Robert B Jenkins, Jeanette E Eckel-Passow, Melissa L Bondy, Stephen S Francis, Linda Kachuri
{"title":"全基因组多基因风险评分预测胶质瘤风险和分子亚型。","authors":"Taishi Nakase, Geno A Guerra, Quinn T Ostrom, Tian Ge, Beatrice S Melin, Margaret Wrensch, John K Wiencke, Robert B Jenkins, Jeanette E Eckel-Passow, Melissa L Bondy, Stephen S Francis, Linda Kachuri","doi":"10.1093/neuonc/noae112","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to efficiently capture genetic risk using available data.</p><p><strong>Methods: </strong>We applied a method based on continuous shrinkage priors (PRS-CS) to model the joint effects of over 1 million common variants on disease risk and compared this to an approach (PRS-CT) that only selects a limited set of independent variants that reach genome-wide significance (P < 5 × 10-8). PRS models were trained using GWAS stratified by histological (10 346 cases and 14 687 controls) and molecular subtype (2632 cases and 2445 controls), and validated in 2 independent cohorts.</p><p><strong>Results: </strong>PRS-CS was generally more predictive than PRS-CT with a median increase in explained variance (R2) of 24% (interquartile range = 11-30%) across glioma subtypes. Improvements were pronounced for glioblastoma (GBM), with PRS-CS yielding larger odds ratios (OR) per standard deviation (SD) (OR = 1.93, P = 2.0 × 10-54 vs. OR = 1.83, P = 9.4 × 10-50) and higher explained variance (R2 = 2.82% vs. R2 = 2.56%). Individuals in the 80th percentile of the PRS-CS distribution had a significantly higher risk of GBM (0.107%) at age 60 compared to those with average PRS (0.046%, P = 2.4 × 10-12). Lifetime absolute risk reached 1.18% for glioma and 0.76% for IDH wildtype tumors for individuals in the 95th PRS percentile. PRS-CS augmented the classification of IDH mutation status in cases when added to demographic factors (AUC = 0.839 vs. AUC = 0.895, PΔAUC = 6.8 × 10-9).</p><p><strong>Conclusions: </strong>Genome-wide PRS has the potential to enhance the detection of high-risk individuals and help distinguish between prognostic glioma subtypes.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":"1933-1944"},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide polygenic risk scores predict risk of glioma and molecular subtypes.\",\"authors\":\"Taishi Nakase, Geno A Guerra, Quinn T Ostrom, Tian Ge, Beatrice S Melin, Margaret Wrensch, John K Wiencke, Robert B Jenkins, Jeanette E Eckel-Passow, Melissa L Bondy, Stephen S Francis, Linda Kachuri\",\"doi\":\"10.1093/neuonc/noae112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to efficiently capture genetic risk using available data.</p><p><strong>Methods: </strong>We applied a method based on continuous shrinkage priors (PRS-CS) to model the joint effects of over 1 million common variants on disease risk and compared this to an approach (PRS-CT) that only selects a limited set of independent variants that reach genome-wide significance (P < 5 × 10-8). PRS models were trained using GWAS stratified by histological (10 346 cases and 14 687 controls) and molecular subtype (2632 cases and 2445 controls), and validated in 2 independent cohorts.</p><p><strong>Results: </strong>PRS-CS was generally more predictive than PRS-CT with a median increase in explained variance (R2) of 24% (interquartile range = 11-30%) across glioma subtypes. Improvements were pronounced for glioblastoma (GBM), with PRS-CS yielding larger odds ratios (OR) per standard deviation (SD) (OR = 1.93, P = 2.0 × 10-54 vs. OR = 1.83, P = 9.4 × 10-50) and higher explained variance (R2 = 2.82% vs. R2 = 2.56%). Individuals in the 80th percentile of the PRS-CS distribution had a significantly higher risk of GBM (0.107%) at age 60 compared to those with average PRS (0.046%, P = 2.4 × 10-12). Lifetime absolute risk reached 1.18% for glioma and 0.76% for IDH wildtype tumors for individuals in the 95th PRS percentile. PRS-CS augmented the classification of IDH mutation status in cases when added to demographic factors (AUC = 0.839 vs. AUC = 0.895, PΔAUC = 6.8 × 10-9).</p><p><strong>Conclusions: </strong>Genome-wide PRS has the potential to enhance the detection of high-risk individuals and help distinguish between prognostic glioma subtypes.</p>\",\"PeriodicalId\":19377,\"journal\":{\"name\":\"Neuro-oncology\",\"volume\":\" \",\"pages\":\"1933-1944\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/neuonc/noae112\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae112","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:多基因风险评分(PRS多基因风险评分(PRS)综合了许多风险变异的贡献,提供了个性化的遗传易感性特征。由于胶质瘤全基因组关联研究(GWAS)的样本量仍然不大,因此需要利用现有数据有效捕捉遗传风险:方法:我们采用了一种基于连续收缩先验(PRS-CS)的方法来模拟 100 多万个常见变异对疾病风险的联合影响,并将其与只选择达到全基因组显著性(PResults:在各种胶质瘤亚型中,PRS-CS 的预测性普遍高于 PRS-CT,解释方差 (R2) 的中位数增加了 24%(四分位间范围=11-30%)。PRS-CS对胶质母细胞瘤(GBM)的预测效果显著,每标准差的几率比(OR)更大(OR=1.93,P=2.0×10-54 vs. OR=1.83,P=9.4×10-50),解释方差(R2=2.82% vs. R2=2.56%)更高。PRS-CS分布第80百分位数的人与PRS平均值(0.046%,P=2.4×10-12)的人相比,60岁时罹患GBM的风险(0.107%)明显更高。PRS百分位数第95位的人患胶质瘤的终生绝对风险为1.18%,患IDH野生型肿瘤的终生绝对风险为0.76%。当加入人口统计学因素时,PRS-CS增强了病例中IDH突变状态的分类(AUC=0.839 vs. AUC=0.895,PΔAUC=6.8×10-9):结论:全基因组PRS有望提高高危人群的检测率,并有助于区分预后良好的胶质瘤亚型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide polygenic risk scores predict risk of glioma and molecular subtypes.

Background: Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to efficiently capture genetic risk using available data.

Methods: We applied a method based on continuous shrinkage priors (PRS-CS) to model the joint effects of over 1 million common variants on disease risk and compared this to an approach (PRS-CT) that only selects a limited set of independent variants that reach genome-wide significance (P < 5 × 10-8). PRS models were trained using GWAS stratified by histological (10 346 cases and 14 687 controls) and molecular subtype (2632 cases and 2445 controls), and validated in 2 independent cohorts.

Results: PRS-CS was generally more predictive than PRS-CT with a median increase in explained variance (R2) of 24% (interquartile range = 11-30%) across glioma subtypes. Improvements were pronounced for glioblastoma (GBM), with PRS-CS yielding larger odds ratios (OR) per standard deviation (SD) (OR = 1.93, P = 2.0 × 10-54 vs. OR = 1.83, P = 9.4 × 10-50) and higher explained variance (R2 = 2.82% vs. R2 = 2.56%). Individuals in the 80th percentile of the PRS-CS distribution had a significantly higher risk of GBM (0.107%) at age 60 compared to those with average PRS (0.046%, P = 2.4 × 10-12). Lifetime absolute risk reached 1.18% for glioma and 0.76% for IDH wildtype tumors for individuals in the 95th PRS percentile. PRS-CS augmented the classification of IDH mutation status in cases when added to demographic factors (AUC = 0.839 vs. AUC = 0.895, PΔAUC = 6.8 × 10-9).

Conclusions: Genome-wide PRS has the potential to enhance the detection of high-risk individuals and help distinguish between prognostic glioma subtypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Canonical Amplifications and CDKN2A/B Loss Refine IDH1/2-mutant Astrocytoma Prognosis. Dynamic contrast-enhanced and diffusion-weighted MR imaging for predicting tumor growth of sporadic vestibular schwannomas: a prospective study. Distinct epigenetic and transcriptional profiles of Epstein-Barr virus (EBV) positive and negative primary CNS lymphomas. Inhibition of Mitochondrial Bioenergetics and Hypoxia to Radiosensitize Diffuse Intrinsic Pontine Glioma. EANO guideline on molecular testing of meningiomas for targeted therapy selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1