Qian Wang;Wenqiang Ma;Li Ping Qian;Xinwei Du;Changyuan Yu;Pooi-Yuen Kam
{"title":"具有维纳载波相位噪声的多环 $M$-APSK 的维特比-维特比载波相位估计及其性能","authors":"Qian Wang;Wenqiang Ma;Li Ping Qian;Xinwei Du;Changyuan Yu;Pooi-Yuen Kam","doi":"10.1109/JPHOT.2024.3415635","DOIUrl":null,"url":null,"abstract":"High-order modulations are currently widely used in optical communications to increase the data rate. However, due to the existence of laser phase noise, the performance of high-order modulated systems will be greatly degraded. Therefore, phase estimation (PE) methods and laser linewidth tolerance analysis are particularly important in practice. In this paper, we first propose a common refined Viterbi-Viterbi carrier phase estimator for multi-ring \n<inline-formula><tex-math>$M$</tex-math></inline-formula>\n-ary amplitude phase-shift keying (\n<inline-formula><tex-math>$M$</tex-math></inline-formula>\n-APSK) with Wiener phase noise. The design is based on the linear minimum mean square error (LMMSE) criterion to optimize the weight coefficients with respect to the statistics of Wiener phase noise and additive, white, Gaussian noise. For simple implementation, approximate ring-detection-based and average-energy-based LMMSE estimators are further derived for multi-ring modulations. The laser linewidth tolerance in Wiener phase noise is analyzed thoroughly compared to the popular PE methods, e.g., decision-aided maximum likelihood and QPSK partitioning. Numerical results show in detail the receiver sensitivity penalties as a function of the estimation memory length, and verify that the proposed estimators do not suffer from the block length effect and perform much better at high signal-to-noise ratio (SNR). They are suitable for coherent demodulation of a multi-ring signal constellation in high SNR or fast-varying phase noise.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561477","citationCount":"0","resultStr":"{\"title\":\"Viterbi-Viterbi Carrier Phase Estimation for Multi-Ring $M$-APSK With Wiener Carrier Phase Noise and Its Performance\",\"authors\":\"Qian Wang;Wenqiang Ma;Li Ping Qian;Xinwei Du;Changyuan Yu;Pooi-Yuen Kam\",\"doi\":\"10.1109/JPHOT.2024.3415635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-order modulations are currently widely used in optical communications to increase the data rate. However, due to the existence of laser phase noise, the performance of high-order modulated systems will be greatly degraded. Therefore, phase estimation (PE) methods and laser linewidth tolerance analysis are particularly important in practice. In this paper, we first propose a common refined Viterbi-Viterbi carrier phase estimator for multi-ring \\n<inline-formula><tex-math>$M$</tex-math></inline-formula>\\n-ary amplitude phase-shift keying (\\n<inline-formula><tex-math>$M$</tex-math></inline-formula>\\n-APSK) with Wiener phase noise. The design is based on the linear minimum mean square error (LMMSE) criterion to optimize the weight coefficients with respect to the statistics of Wiener phase noise and additive, white, Gaussian noise. For simple implementation, approximate ring-detection-based and average-energy-based LMMSE estimators are further derived for multi-ring modulations. The laser linewidth tolerance in Wiener phase noise is analyzed thoroughly compared to the popular PE methods, e.g., decision-aided maximum likelihood and QPSK partitioning. Numerical results show in detail the receiver sensitivity penalties as a function of the estimation memory length, and verify that the proposed estimators do not suffer from the block length effect and perform much better at high signal-to-noise ratio (SNR). They are suitable for coherent demodulation of a multi-ring signal constellation in high SNR or fast-varying phase noise.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 4\",\"pages\":\"1-8\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561477\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561477/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10561477/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Viterbi-Viterbi Carrier Phase Estimation for Multi-Ring $M$-APSK With Wiener Carrier Phase Noise and Its Performance
High-order modulations are currently widely used in optical communications to increase the data rate. However, due to the existence of laser phase noise, the performance of high-order modulated systems will be greatly degraded. Therefore, phase estimation (PE) methods and laser linewidth tolerance analysis are particularly important in practice. In this paper, we first propose a common refined Viterbi-Viterbi carrier phase estimator for multi-ring
$M$
-ary amplitude phase-shift keying (
$M$
-APSK) with Wiener phase noise. The design is based on the linear minimum mean square error (LMMSE) criterion to optimize the weight coefficients with respect to the statistics of Wiener phase noise and additive, white, Gaussian noise. For simple implementation, approximate ring-detection-based and average-energy-based LMMSE estimators are further derived for multi-ring modulations. The laser linewidth tolerance in Wiener phase noise is analyzed thoroughly compared to the popular PE methods, e.g., decision-aided maximum likelihood and QPSK partitioning. Numerical results show in detail the receiver sensitivity penalties as a function of the estimation memory length, and verify that the proposed estimators do not suffer from the block length effect and perform much better at high signal-to-noise ratio (SNR). They are suitable for coherent demodulation of a multi-ring signal constellation in high SNR or fast-varying phase noise.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.