超薄掺铌氧化铟活性层可实现高性能光电晶体管,用于驱动量子点发光二极管

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-06-22 DOI:10.1002/lpor.202400276
Jianrong Lin, Wenhui Fang, Haixing Tan, Haojun Zhang, Jingfei Dai, Ziqing Liu, Si Liu, Jianwen Chen, Runfeng Wu, Hua Xu, Kar Wei Ng, Peng Xiao, Baiquan Liu
{"title":"超薄掺铌氧化铟活性层可实现高性能光电晶体管,用于驱动量子点发光二极管","authors":"Jianrong Lin, Wenhui Fang, Haixing Tan, Haojun Zhang, Jingfei Dai, Ziqing Liu, Si Liu, Jianwen Chen, Runfeng Wu, Hua Xu, Kar Wei Ng, Peng Xiao, Baiquan Liu","doi":"10.1002/lpor.202400276","DOIUrl":null,"url":null,"abstract":"Active materials play a crucial role in the performance of phototransistors. However, the discovery of a novel and versatile active material is a big challenge. For the first time, phototransistors with ultrathin niobium‐doped indium oxide (InNbO) active layer are fabricated. The InNbO phototransistors without additional light‐absorbing layers exhibit the performance with a high average mobility of 22.86 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup>s<jats:sup>−1</jats:sup>, a turn‐on voltage of −0.75 V, a low sub threshold swing of 0.18 V/decade, and a high on/off current ratio of 5.74 × 10<jats:sup>8</jats:sup>. Detailed studies show that Nb is the key to suppress the free carrier generation due to the strong bonding strength of Nb─O. In addition, the InNbO phototransistors exhibit a very broad spectral responsivity with a photocurrent of 4.72 × 10<jats:sup>−4</jats:sup> A, a photosensitivity of 1.69 × 10<jats:sup>8</jats:sup>, and a high detectivity of 3.33 × 10<jats:sup>13</jats:sup> Jones under violet (405 nm) light illumination, which is significantly higher than that of the IGZO phototransistors. Furthermore, an active‐matrix quantum‐dot light‐emitting diode pixel circuit based on InNbO phototransistors is demonstrated. The findings not only indicate that InNbO is a new active material for phototransistors, but also suggest that InNbO‐based phototransistors have a great potential for the next‐generation interactive display technology.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin Niobium‐Doped Indium Oxide Active Layer Enables High‐Performance Phototransistors for Driving Quantum‐Dot Light‐Emitting Diodes\",\"authors\":\"Jianrong Lin, Wenhui Fang, Haixing Tan, Haojun Zhang, Jingfei Dai, Ziqing Liu, Si Liu, Jianwen Chen, Runfeng Wu, Hua Xu, Kar Wei Ng, Peng Xiao, Baiquan Liu\",\"doi\":\"10.1002/lpor.202400276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active materials play a crucial role in the performance of phototransistors. However, the discovery of a novel and versatile active material is a big challenge. For the first time, phototransistors with ultrathin niobium‐doped indium oxide (InNbO) active layer are fabricated. The InNbO phototransistors without additional light‐absorbing layers exhibit the performance with a high average mobility of 22.86 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup>s<jats:sup>−1</jats:sup>, a turn‐on voltage of −0.75 V, a low sub threshold swing of 0.18 V/decade, and a high on/off current ratio of 5.74 × 10<jats:sup>8</jats:sup>. Detailed studies show that Nb is the key to suppress the free carrier generation due to the strong bonding strength of Nb─O. In addition, the InNbO phototransistors exhibit a very broad spectral responsivity with a photocurrent of 4.72 × 10<jats:sup>−4</jats:sup> A, a photosensitivity of 1.69 × 10<jats:sup>8</jats:sup>, and a high detectivity of 3.33 × 10<jats:sup>13</jats:sup> Jones under violet (405 nm) light illumination, which is significantly higher than that of the IGZO phototransistors. Furthermore, an active‐matrix quantum‐dot light‐emitting diode pixel circuit based on InNbO phototransistors is demonstrated. The findings not only indicate that InNbO is a new active material for phototransistors, but also suggest that InNbO‐based phototransistors have a great potential for the next‐generation interactive display technology.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202400276\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400276","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

活性材料对光晶体管的性能起着至关重要的作用。然而,发现新型多功能活性材料是一项巨大挑战。我们首次制造出了具有超薄掺铌氧化铟(InNbO)活性层的光电晶体管。这种没有额外光吸收层的 InNbO 光晶体管性能优异,具有 22.86 cm2 V-1s-1 的高平均迁移率、-0.75 V 的导通电压、0.18 V/decade 的低次阈值波动和 5.74 × 108 的高导通/截止电流比。详细研究表明,由于 Nb─O 具有很强的结合强度,因此 Nb 是抑制自由载流子产生的关键。此外,InNbO 光电晶体管具有非常宽的光谱响应度,在紫光(405 nm)照射下的光电流为 4.72 × 10-4 A,光敏度为 1.69 × 108,检测率高达 3.33 × 1013 Jones,明显高于 IGZO 光电晶体管。此外,还展示了基于 InNbO 光晶体管的有源矩阵量子点发光二极管像素电路。这些研究结果不仅表明 InNbO 是一种新的光电晶体管活性材料,还表明基于 InNbO 的光电晶体管在下一代交互式显示技术中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrathin Niobium‐Doped Indium Oxide Active Layer Enables High‐Performance Phototransistors for Driving Quantum‐Dot Light‐Emitting Diodes
Active materials play a crucial role in the performance of phototransistors. However, the discovery of a novel and versatile active material is a big challenge. For the first time, phototransistors with ultrathin niobium‐doped indium oxide (InNbO) active layer are fabricated. The InNbO phototransistors without additional light‐absorbing layers exhibit the performance with a high average mobility of 22.86 cm2 V−1s−1, a turn‐on voltage of −0.75 V, a low sub threshold swing of 0.18 V/decade, and a high on/off current ratio of 5.74 × 108. Detailed studies show that Nb is the key to suppress the free carrier generation due to the strong bonding strength of Nb─O. In addition, the InNbO phototransistors exhibit a very broad spectral responsivity with a photocurrent of 4.72 × 10−4 A, a photosensitivity of 1.69 × 108, and a high detectivity of 3.33 × 1013 Jones under violet (405 nm) light illumination, which is significantly higher than that of the IGZO phototransistors. Furthermore, an active‐matrix quantum‐dot light‐emitting diode pixel circuit based on InNbO phototransistors is demonstrated. The findings not only indicate that InNbO is a new active material for phototransistors, but also suggest that InNbO‐based phototransistors have a great potential for the next‐generation interactive display technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Efficient Rational Approximation of Optical Response Functions with the AAA Algorithm Topologically Protected Single Edge Mode Lasing in Photonic Crystal Su–Schrieffer–Heeger Lattice with Directional Loss Control All-Dielectric Meta-Waveguides for Flexible Polarization Control of Guided Light Suppressing Side-Scattering on Laser-Written Bragg Gratings for Back-Reflection Engineering in Fibers High Resolution Nanostructuring of Perovskites With Tunable Morphologies by Ultrafast Laser Direct Writing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1