利用表面增强拉曼散射法同时多重检测和量化与腋臭相关的硫醇

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-06-24 DOI:10.1039/D4AN00762J
Amy Colleran, Cassio Lima, Yun Xu, Allen Millichope, Stephanie Murray and Royston Goodacre
{"title":"利用表面增强拉曼散射法同时多重检测和量化与腋臭相关的硫醇","authors":"Amy Colleran, Cassio Lima, Yun Xu, Allen Millichope, Stephanie Murray and Royston Goodacre","doi":"10.1039/D4AN00762J","DOIUrl":null,"url":null,"abstract":"<p >Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (<em>Q</em><small><sup>2</sup></small> values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/an/d4an00762j?page=search","citationCount":"0","resultStr":"{\"title\":\"Using surface-enhanced Raman scattering for simultaneous multiplex detection and quantification of thiols associated to axillary malodour†\",\"authors\":\"Amy Colleran, Cassio Lima, Yun Xu, Allen Millichope, Stephanie Murray and Royston Goodacre\",\"doi\":\"10.1039/D4AN00762J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (<em>Q</em><small><sup>2</sup></small> values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.</p>\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/an/d4an00762j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00762j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00762j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

腋窝恶臭是由微生物将人体产生的前体物质转化为挥发性有机化合物造成的。硫醇在很大程度上造成了这种气味,但由于含量较低,很难检测到。此外,硫醇极易挥发且体积小,因此很难采样和分析,包括使用气相色谱-质谱法。这使得硫醇的检测和定量极为困难。在这项研究中,利用表面增强拉曼散射(SERS)与化学计量学相结合的方法,同时对单个溶液和多重溶液中与腋臭相关的四种恶臭硫醇进行了量化。使用偏最小二乘回归(PLS-R)的单变量和多变量方法计算检测限(LoD),并对结果进行比较。两种方法得出的 LoD 值相当,使用 PLS-R 方法计算的硫醇 LoD 值为 0.0227 ppm 至 0.0153 ppm。然后使用 PLS-R 对 120 种混合物中的这些硫醇同时进行了检测和定量。所建立的模型显示出较高的线性度(PLS-1 和 PLS-2 的 Q2 值在 0.9712 和 0.9827 之间)和较低的预测均方根误差值(PLS-1 和 PLS-2 分别为 0.0359 ppm 和 0.0459 ppm)。为了进一步测试这种方法,我们用独立于初始样本收集的 15 个新的盲测样本对这些模型进行了挑战。测试结果表明,SERS 与 PLS-R 的结合可以用来预测混合物中这些硫醇的未知浓度。这些结果表明了 SERS 的同步多重检测能力及其在检测皮肤或身体部位产生的气态硫醇方面的未来发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using surface-enhanced Raman scattering for simultaneous multiplex detection and quantification of thiols associated to axillary malodour†

Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (Q2 values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences
期刊最新文献
Screen printed 3D Microfluidic Paper-based and Modifier-Free Electroanalytical Device for Clozapine Sensing Evaluating Protocols for Reproducible Targeted Metabolomics by NMR Selection of DNA aptamers for detecting metronidazole and ibuprofen: two common additives in soft drinks Differentiation of Oligosaccharide Isomers by Direct Infusion Multidimensional Mass Spectrometry Highly sensitive and reproducible fluorescence sensor for continuously measuring hydrogen peroxide at sub-ppm level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1