揭示 Ca/Cu 复合吸附剂捕获二氧化碳的潜力:前驱体视角

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-06-25 DOI:10.1021/acs.iecr.4c01037
Yanbin Hu, Xilei Liu, Yong Li, Yuxin Jiang, Yuxin Ma, Jian Chen*, Yuanchao Xue, Mengru Wang, Youshi Li* and Mingdi Li, 
{"title":"揭示 Ca/Cu 复合吸附剂捕获二氧化碳的潜力:前驱体视角","authors":"Yanbin Hu,&nbsp;Xilei Liu,&nbsp;Yong Li,&nbsp;Yuxin Jiang,&nbsp;Yuxin Ma,&nbsp;Jian Chen*,&nbsp;Yuanchao Xue,&nbsp;Mengru Wang,&nbsp;Youshi Li* and Mingdi Li,&nbsp;","doi":"10.1021/acs.iecr.4c01037","DOIUrl":null,"url":null,"abstract":"<p >The combined Ca/Cu process holds promise as a CO<sub>2</sub> capture technique utilizing chemical looping combustion to provide heat for regenerating CaO-based sorbents in a calcium looping configuration through the Ca/Cu composite sorbents. Developing Ca/Cu composite sorbents with high reactivity is crucial for advancing combined Ca/Cu technology. However, these sorbents encounter a rapid decline in the CO<sub>2</sub> capture performance, remaining a significant problem to be addressed. Herein, various calcium/copper precursors, comprising copper acetate, copper nitrate, calcium propionate, calcium acetate, calcium formate, and calcium nitrate, were utilized to synthesize Ca/Cu composite sorbents using a Pechini method. The results reveal that the selection of calcium and copper precursors significantly affected the CO<sub>2</sub> capture performance. Utilizing organic salts as calcium and/or copper precursors proved beneficial in enhancing the CO<sub>2</sub> capture performance, particularly when employing organic salts with high molecular weights (e.g., copper acetate, calcium propionate, and calcium acetate). The sorbent synthesized using calcium propionate and copper acetate possessed the highest CO<sub>2</sub> capture performance, achieving a final CO<sub>2</sub> uptake capacity of 0.22 g<sub>CO<sub>2</sub></sub>/g<sub>material</sub> in the 10th cycle while retaining 80% of its initial reactivity. In contrast, the sorbent synthesized using calcium nitrate and copper nitrate showed the poorest CO<sub>2</sub> capture performance, with an initial capacity of 0.18 g<sub>CO<sub>2</sub></sub>/g<sub>material</sub> and a final capacity of 0.08 g<sub>CO<sub>2</sub></sub>/g<sub>material</sub> in the 10th cycle. In comparison to the significant impact on the CO<sub>2</sub> capture performance, the selection of precursors had a minimal effect on oxidation performance. Regardless of the precursors used, all the sorbents exhibited commendable oxidation performance, achieving oxidation conversions exceeding 90%. Additionally, systematic investigations were conducted on process conditions encompassing the reaction atmosphere and temperature during the oxidation and carbonation stages. The findings indicate that process conditions had a greater impact on the CO<sub>2</sub> capture performance than on the oxidation performance.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Potential of Ca/Cu Composite Sorbents for CO2 Capture: A Precursor Perspective\",\"authors\":\"Yanbin Hu,&nbsp;Xilei Liu,&nbsp;Yong Li,&nbsp;Yuxin Jiang,&nbsp;Yuxin Ma,&nbsp;Jian Chen*,&nbsp;Yuanchao Xue,&nbsp;Mengru Wang,&nbsp;Youshi Li* and Mingdi Li,&nbsp;\",\"doi\":\"10.1021/acs.iecr.4c01037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The combined Ca/Cu process holds promise as a CO<sub>2</sub> capture technique utilizing chemical looping combustion to provide heat for regenerating CaO-based sorbents in a calcium looping configuration through the Ca/Cu composite sorbents. Developing Ca/Cu composite sorbents with high reactivity is crucial for advancing combined Ca/Cu technology. However, these sorbents encounter a rapid decline in the CO<sub>2</sub> capture performance, remaining a significant problem to be addressed. Herein, various calcium/copper precursors, comprising copper acetate, copper nitrate, calcium propionate, calcium acetate, calcium formate, and calcium nitrate, were utilized to synthesize Ca/Cu composite sorbents using a Pechini method. The results reveal that the selection of calcium and copper precursors significantly affected the CO<sub>2</sub> capture performance. Utilizing organic salts as calcium and/or copper precursors proved beneficial in enhancing the CO<sub>2</sub> capture performance, particularly when employing organic salts with high molecular weights (e.g., copper acetate, calcium propionate, and calcium acetate). The sorbent synthesized using calcium propionate and copper acetate possessed the highest CO<sub>2</sub> capture performance, achieving a final CO<sub>2</sub> uptake capacity of 0.22 g<sub>CO<sub>2</sub></sub>/g<sub>material</sub> in the 10th cycle while retaining 80% of its initial reactivity. In contrast, the sorbent synthesized using calcium nitrate and copper nitrate showed the poorest CO<sub>2</sub> capture performance, with an initial capacity of 0.18 g<sub>CO<sub>2</sub></sub>/g<sub>material</sub> and a final capacity of 0.08 g<sub>CO<sub>2</sub></sub>/g<sub>material</sub> in the 10th cycle. In comparison to the significant impact on the CO<sub>2</sub> capture performance, the selection of precursors had a minimal effect on oxidation performance. Regardless of the precursors used, all the sorbents exhibited commendable oxidation performance, achieving oxidation conversions exceeding 90%. Additionally, systematic investigations were conducted on process conditions encompassing the reaction atmosphere and temperature during the oxidation and carbonation stages. The findings indicate that process conditions had a greater impact on the CO<sub>2</sub> capture performance than on the oxidation performance.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c01037\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c01037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙/铜组合工艺有望成为一种二氧化碳捕集技术,它利用化学循环燃烧提供热量,通过钙/铜复合吸附剂的钙循环配置再生以氧化钙为基础的吸附剂。开发具有高反应活性的钙/铜复合吸附剂对于推进钙/铜结合技术至关重要。然而,这些吸附剂的二氧化碳捕集性能会迅速下降,这仍然是一个亟待解决的重要问题。本文利用各种钙/铜前驱体,包括醋酸铜、硝酸铜、丙酸钙、醋酸钙、甲酸钙和硝酸钙,采用 Pechini 法合成了钙/铜复合吸附剂。结果表明,钙和铜前体的选择对二氧化碳捕集性能有很大影响。事实证明,使用有机盐作为钙和/或铜前体有利于提高二氧化碳捕集性能,尤其是使用高分子量的有机盐(如醋酸铜、丙酸钙和醋酸钙)时。使用丙酸钙和醋酸铜合成的吸附剂具有最高的二氧化碳捕获性能,在第 10 个循环中的最终二氧化碳吸收能力达到 0.22 gCO2/gmaterial,同时保留了 80% 的初始反应活性。相比之下,使用硝酸钙和硝酸铜合成的吸附剂的二氧化碳捕集性能最差,在第 10 个循环中的初始捕集能力为 0.18 克 CO2/克材料,最终捕集能力为 0.08 克 CO2/克材料。与对二氧化碳捕集性能的重大影响相比,前驱体的选择对氧化性能的影响微乎其微。无论使用哪种前驱体,所有吸附剂都表现出令人称道的氧化性能,氧化转化率超过 90%。此外,还对氧化和碳化阶段的工艺条件(包括反应气氛和温度)进行了系统研究。研究结果表明,与氧化性能相比,工艺条件对二氧化碳捕获性能的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the Potential of Ca/Cu Composite Sorbents for CO2 Capture: A Precursor Perspective

The combined Ca/Cu process holds promise as a CO2 capture technique utilizing chemical looping combustion to provide heat for regenerating CaO-based sorbents in a calcium looping configuration through the Ca/Cu composite sorbents. Developing Ca/Cu composite sorbents with high reactivity is crucial for advancing combined Ca/Cu technology. However, these sorbents encounter a rapid decline in the CO2 capture performance, remaining a significant problem to be addressed. Herein, various calcium/copper precursors, comprising copper acetate, copper nitrate, calcium propionate, calcium acetate, calcium formate, and calcium nitrate, were utilized to synthesize Ca/Cu composite sorbents using a Pechini method. The results reveal that the selection of calcium and copper precursors significantly affected the CO2 capture performance. Utilizing organic salts as calcium and/or copper precursors proved beneficial in enhancing the CO2 capture performance, particularly when employing organic salts with high molecular weights (e.g., copper acetate, calcium propionate, and calcium acetate). The sorbent synthesized using calcium propionate and copper acetate possessed the highest CO2 capture performance, achieving a final CO2 uptake capacity of 0.22 gCO2/gmaterial in the 10th cycle while retaining 80% of its initial reactivity. In contrast, the sorbent synthesized using calcium nitrate and copper nitrate showed the poorest CO2 capture performance, with an initial capacity of 0.18 gCO2/gmaterial and a final capacity of 0.08 gCO2/gmaterial in the 10th cycle. In comparison to the significant impact on the CO2 capture performance, the selection of precursors had a minimal effect on oxidation performance. Regardless of the precursors used, all the sorbents exhibited commendable oxidation performance, achieving oxidation conversions exceeding 90%. Additionally, systematic investigations were conducted on process conditions encompassing the reaction atmosphere and temperature during the oxidation and carbonation stages. The findings indicate that process conditions had a greater impact on the CO2 capture performance than on the oxidation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Computational Model of Two-Phase Mass Transport Dynamics for pH-Buffered Hydrogen Evolution Reactions in Porous Electrodes CO2 Conversion into Light Olefins Using an InCeZrOX/H-ZSM-5-Si Bifunctional Catalyst Pyrolysis Behavior of Waste Printed Circuit Boards in a Vertical Fixed Bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1