通过同步加速器光电子能谱学和化学电离质谱法研究大气和燃烧温度下的 1-己烯臭氧分解。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-06-25 DOI:10.1021/acs.jpca.4c02687
Caroline Smith Lewin, Avinash Kumar, Olivier Herbinet, Philippe Arnoux, Rabbia Asgher, Shawon Barua, Frédérique Battin-Leclerc, Sana Farhoudian, Gustavo A. Garcia, Luc-Sy Tran, Guillaume Vanhove, Laurent Nahon, Matti Rissanen and Jérémy Bourgalais*, 
{"title":"通过同步加速器光电子能谱学和化学电离质谱法研究大气和燃烧温度下的 1-己烯臭氧分解。","authors":"Caroline Smith Lewin,&nbsp;Avinash Kumar,&nbsp;Olivier Herbinet,&nbsp;Philippe Arnoux,&nbsp;Rabbia Asgher,&nbsp;Shawon Barua,&nbsp;Frédérique Battin-Leclerc,&nbsp;Sana Farhoudian,&nbsp;Gustavo A. Garcia,&nbsp;Luc-Sy Tran,&nbsp;Guillaume Vanhove,&nbsp;Laurent Nahon,&nbsp;Matti Rissanen and Jérémy Bourgalais*,&nbsp;","doi":"10.1021/acs.jpca.4c02687","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300–800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry\",\"authors\":\"Caroline Smith Lewin,&nbsp;Avinash Kumar,&nbsp;Olivier Herbinet,&nbsp;Philippe Arnoux,&nbsp;Rabbia Asgher,&nbsp;Shawon Barua,&nbsp;Frédérique Battin-Leclerc,&nbsp;Sana Farhoudian,&nbsp;Gustavo A. Garcia,&nbsp;Luc-Sy Tran,&nbsp;Guillaume Vanhove,&nbsp;Laurent Nahon,&nbsp;Matti Rissanen and Jérémy Bourgalais*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.4c02687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300–800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c02687\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c02687","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了臭氧与 1-hexene 自氧化之间在宽温度范围(300-800 K)内的复杂相互作用,以及大气和燃烧状态的重叠。研究发现,从室温到燃烧温度,大气分子机制启动了 1-己烯的氧化,从而形成高含氧有机分子。随着温度的升高,高含氧有机分子有助于自由基支化分解途径,从而在低温燃烧区域(即从 550 K 开始)产生高反应性。超过 650 K 后,臭氧热分解为氧原子的过程成为主要过程,由于其二元对立性质,转化率显著提高,抵消了通常在 1-己烯中观察到的显著负温度系数行为。为了更好地描述重含氧有机分子在最低温度下的形成过程,我们首次将两种分析性能方法结合在一起:同步辐射质量选择光电子能谱和轨道阱化学电离质谱。在研究的最低温度(低于 400 K)下,这项分析工作证明了在 1-hexene 的 LTC 氧化过程中通常发现的酮氢过氧化物以及含有多达 9 个 O 原子的分子的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry

This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300–800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Calculated Aqueous Reduction Potentials of Neutral and Anionic Halogen Diatomic Molecules. Electronic Structures of Small Stoichiometric ZnxOx Clusters. Room Temperature Gas Phase Equilibrium Constants of the Methanol Dimer, Trimer, and Tetramer. Secondary Brown Carbon Aerosol Resists Bleaching by Ozone under Acidic Conditions. Combining Complex Conjugation, Time-Reversal, and Spin-Flip Symmetry Projection of Coupled Cluster Wave Functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1