用于极端碱性 pH 值传感的掺铁 SrCoOx FET 传感器。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-06-26 DOI:10.1021/acs.langmuir.4c01339
Han Zhou, Gaocan Qi, Wenbin Li, Wencheng Song* and Zhihao Yuan*, 
{"title":"用于极端碱性 pH 值传感的掺铁 SrCoOx FET 传感器。","authors":"Han Zhou,&nbsp;Gaocan Qi,&nbsp;Wenbin Li,&nbsp;Wencheng Song* and Zhihao Yuan*,&nbsp;","doi":"10.1021/acs.langmuir.4c01339","DOIUrl":null,"url":null,"abstract":"<p >The accurate measurement of pH in highly alkaline environments is critical for various industrial applications but remains a complex task. This paper discusses the development of novel Fe-doped SrCoO<sub><i>x</i></sub>-based FET sensors for the detection of extreme alkaline pH levels. Through a comprehensive investigation of the effects of Fe doping on the structure, electrical properties, and sensing performance of SrCoO<sub><i>x</i></sub>, we have identified the optimal doping level that significantly enhances the sensor’s performance in highly alkaline conditions. With a Fe doping level of 5 mol %, the sensitivity of the sensor improves to 0.86 lg(Ω)/pH while maintaining the response rate. Further increasing the Fe doping to 10 mol % results in a sensor that demonstrates favorable response time, a suitable pH range, and a linear correlation between lg(<i>R</i>) and pH. The combination of X-ray photoelectron spectroscopy and X-ray diffraction analysis provides insight into the regulation mechanisms of Fe doping on the crystal structure, electronic structure, and oxygen vacancy concentration of SrCoO<sub><i>x</i></sub>. Our findings indicate that Fe doping leads to an increase in oxygen vacancy concentration and a decrease in the energy barrier for oxygen ion migration, which contributes to the improved sensing performance of the Fe-doped SrCoO<sub><i>x</i></sub> sensors. Additionally, the study highlights the influence of oxygen vacancy concentration on the electrical properties of SrCoO<sub><i>x</i></sub>. Precise control over the concentration of oxygen vacancies is crucial for optimizing the sensitivity and response speed of SrCoO<sub><i>x</i></sub> FET sensors under extreme alkalinity conditions.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-Doped SrCoOx FET Sensors for Extreme Alkaline pH Sensing\",\"authors\":\"Han Zhou,&nbsp;Gaocan Qi,&nbsp;Wenbin Li,&nbsp;Wencheng Song* and Zhihao Yuan*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c01339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The accurate measurement of pH in highly alkaline environments is critical for various industrial applications but remains a complex task. This paper discusses the development of novel Fe-doped SrCoO<sub><i>x</i></sub>-based FET sensors for the detection of extreme alkaline pH levels. Through a comprehensive investigation of the effects of Fe doping on the structure, electrical properties, and sensing performance of SrCoO<sub><i>x</i></sub>, we have identified the optimal doping level that significantly enhances the sensor’s performance in highly alkaline conditions. With a Fe doping level of 5 mol %, the sensitivity of the sensor improves to 0.86 lg(Ω)/pH while maintaining the response rate. Further increasing the Fe doping to 10 mol % results in a sensor that demonstrates favorable response time, a suitable pH range, and a linear correlation between lg(<i>R</i>) and pH. The combination of X-ray photoelectron spectroscopy and X-ray diffraction analysis provides insight into the regulation mechanisms of Fe doping on the crystal structure, electronic structure, and oxygen vacancy concentration of SrCoO<sub><i>x</i></sub>. Our findings indicate that Fe doping leads to an increase in oxygen vacancy concentration and a decrease in the energy barrier for oxygen ion migration, which contributes to the improved sensing performance of the Fe-doped SrCoO<sub><i>x</i></sub> sensors. Additionally, the study highlights the influence of oxygen vacancy concentration on the electrical properties of SrCoO<sub><i>x</i></sub>. Precise control over the concentration of oxygen vacancies is crucial for optimizing the sensitivity and response speed of SrCoO<sub><i>x</i></sub> FET sensors under extreme alkalinity conditions.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01339\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01339","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

精确测量高碱性环境中的 pH 值对各种工业应用至关重要,但这仍然是一项复杂的任务。本文讨论了新型铁掺杂 SrCoOx 基 FET 传感器的开发,用于检测极端碱性 pH 值。通过全面研究铁掺杂对氧化锰酸钴结构、电性能和传感性能的影响,我们确定了最佳掺杂水平,该水平可显著提高传感器在高碱性条件下的性能。当铁掺杂水平为 5 摩尔% 时,传感器的灵敏度提高到 0.86 lg(Ω)/pH,同时响应速度保持不变。将铁的掺杂水平进一步提高到 10 摩尔%,传感器就能显示出良好的响应时间、合适的 pH 值范围以及 lg(R) 与 pH 值之间的线性相关关系。结合 X 射线光电子能谱和 X 射线衍射分析,我们可以深入了解铁掺杂对 SrCoOx 晶体结构、电子结构和氧空位浓度的调节机制。我们的研究结果表明,铁掺杂会导致氧空位浓度的增加和氧离子迁移能垒的降低,这有助于提高掺铁 SrCoOx 传感器的传感性能。此外,研究还强调了氧空位浓度对氧化锰酸钴电性能的影响。精确控制氧空位的浓度对于优化 SrCoOx FET 传感器在极端碱度条件下的灵敏度和响应速度至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe-Doped SrCoOx FET Sensors for Extreme Alkaline pH Sensing

The accurate measurement of pH in highly alkaline environments is critical for various industrial applications but remains a complex task. This paper discusses the development of novel Fe-doped SrCoOx-based FET sensors for the detection of extreme alkaline pH levels. Through a comprehensive investigation of the effects of Fe doping on the structure, electrical properties, and sensing performance of SrCoOx, we have identified the optimal doping level that significantly enhances the sensor’s performance in highly alkaline conditions. With a Fe doping level of 5 mol %, the sensitivity of the sensor improves to 0.86 lg(Ω)/pH while maintaining the response rate. Further increasing the Fe doping to 10 mol % results in a sensor that demonstrates favorable response time, a suitable pH range, and a linear correlation between lg(R) and pH. The combination of X-ray photoelectron spectroscopy and X-ray diffraction analysis provides insight into the regulation mechanisms of Fe doping on the crystal structure, electronic structure, and oxygen vacancy concentration of SrCoOx. Our findings indicate that Fe doping leads to an increase in oxygen vacancy concentration and a decrease in the energy barrier for oxygen ion migration, which contributes to the improved sensing performance of the Fe-doped SrCoOx sensors. Additionally, the study highlights the influence of oxygen vacancy concentration on the electrical properties of SrCoOx. Precise control over the concentration of oxygen vacancies is crucial for optimizing the sensitivity and response speed of SrCoOx FET sensors under extreme alkalinity conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Mechanism of Sulfate Radical Formation on Activation of Persulfate Using Doped Metal Oxide and Its Role in Degradation of Tartrazine Dye in an Aqueous Solution. Selective SERS Sensing of R6G Molecules Using MoS2 Nanoflowers under Pressure. Synthesis and Fabrication of Metal Cation Intercalation in Multilayered Ti3C2Tx Composite CNF Electrode for Asymmetric Coin Cell Supercapacitors. Unveiling the Electrostatically Driven Collapsing and Relaxation of Polyelectrolyte-Colloid Complexes: A Tunable Pathway to Colloidal Assembly. Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1