气泡弹性三维独立纳米多孔石墨烯与封装多组分纳米合金用于增强电催化。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-06-18 DOI:10.1039/D4NH00190G
Linshan Zhu, Qingqing Li, Yixuan Hu, Xin Wu, Kolan Madhav Reddy, Kaikai Li, Guoqiang Xie, Xingjun Liu and Hua-Jun Qiu
{"title":"气泡弹性三维独立纳米多孔石墨烯与封装多组分纳米合金用于增强电催化。","authors":"Linshan Zhu, Qingqing Li, Yixuan Hu, Xin Wu, Kolan Madhav Reddy, Kaikai Li, Guoqiang Xie, Xingjun Liu and Hua-Jun Qiu","doi":"10.1039/D4NH00190G","DOIUrl":null,"url":null,"abstract":"<p >The design and synthesis of highly durable and active electrocatalysts are crucial for improving the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this work, we present a novel dealloyed nanoporous PtCuNiCoMn multicomponent alloy with ligaments/pores ranging from 2–3 nm, which is <em>in situ</em> encapsulated in a three-dimensional, free-standing nanoporous nanotubular graphene network featuring a pore/tube diameter of ∼200 to 300 nm. This method allows precise control over the noble metal loading and alloy composition while preventing noble metal loss throughout the preparation process. The innovative bimodal nanoporous graphene/alloy structure, coupled with an open 3D spongy morphology, and optimized surface Pt electronic structure through multicomponent interaction, significantly enhances the activity for the HER/ORR, outperforming commercial Pt/C. Moreover, this design addresses the issues of Pt nanoparticle aggregation and detachment from carbon supports that typically exist in Pt/C-type catalysts, thereby substantially improving the catalytic durability, even under intense gas bubbling conditions.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubbling resilient 3D free-standing nanoporous graphene with an encapsulated multicomponent nano-alloy for enhanced electrocatalysis†\",\"authors\":\"Linshan Zhu, Qingqing Li, Yixuan Hu, Xin Wu, Kolan Madhav Reddy, Kaikai Li, Guoqiang Xie, Xingjun Liu and Hua-Jun Qiu\",\"doi\":\"10.1039/D4NH00190G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The design and synthesis of highly durable and active electrocatalysts are crucial for improving the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this work, we present a novel dealloyed nanoporous PtCuNiCoMn multicomponent alloy with ligaments/pores ranging from 2–3 nm, which is <em>in situ</em> encapsulated in a three-dimensional, free-standing nanoporous nanotubular graphene network featuring a pore/tube diameter of ∼200 to 300 nm. This method allows precise control over the noble metal loading and alloy composition while preventing noble metal loss throughout the preparation process. The innovative bimodal nanoporous graphene/alloy structure, coupled with an open 3D spongy morphology, and optimized surface Pt electronic structure through multicomponent interaction, significantly enhances the activity for the HER/ORR, outperforming commercial Pt/C. Moreover, this design addresses the issues of Pt nanoparticle aggregation and detachment from carbon supports that typically exist in Pt/C-type catalysts, thereby substantially improving the catalytic durability, even under intense gas bubbling conditions.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00190g\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00190g","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

设计和合成高耐久性和高活性的电催化剂对于改善质子交换膜燃料电池(PEMFC)中的氢进化反应(HER)和氧还原反应(ORR)至关重要。在这项工作中,我们提出了一种新型的去合金化纳米多孔铂铜镍钴锰多组分合金,这种合金的韧带/孔隙范围在 2-3 纳米之间,并被原位封装在三维、独立的纳米多孔管状石墨烯网络中,其孔隙/管直径在 200 到 300 纳米之间。这种方法可以精确控制贵金属负载量和合金成分,同时防止贵金属在整个制备过程中流失。创新的双峰纳米多孔石墨烯/合金结构,加上开放的三维海绵状形态,以及通过多组分相互作用优化的表面铂电子结构,显著提高了 HER/ORR 的活性,优于商用 Pt/C。此外,这种设计还解决了 Pt/C 型催化剂通常存在的铂纳米粒子聚集和脱离碳载体的问题,从而大大提高了催化持久性,即使在高强度气体鼓泡条件下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bubbling resilient 3D free-standing nanoporous graphene with an encapsulated multicomponent nano-alloy for enhanced electrocatalysis†

The design and synthesis of highly durable and active electrocatalysts are crucial for improving the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this work, we present a novel dealloyed nanoporous PtCuNiCoMn multicomponent alloy with ligaments/pores ranging from 2–3 nm, which is in situ encapsulated in a three-dimensional, free-standing nanoporous nanotubular graphene network featuring a pore/tube diameter of ∼200 to 300 nm. This method allows precise control over the noble metal loading and alloy composition while preventing noble metal loss throughout the preparation process. The innovative bimodal nanoporous graphene/alloy structure, coupled with an open 3D spongy morphology, and optimized surface Pt electronic structure through multicomponent interaction, significantly enhances the activity for the HER/ORR, outperforming commercial Pt/C. Moreover, this design addresses the issues of Pt nanoparticle aggregation and detachment from carbon supports that typically exist in Pt/C-type catalysts, thereby substantially improving the catalytic durability, even under intense gas bubbling conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1