不断变化的气候中的猪繁殖力。

IF 2.2 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Reproduction Science Pub Date : 2024-06-17 DOI:10.1016/j.anireprosci.2024.107537
Robert V Knox
{"title":"不断变化的气候中的猪繁殖力。","authors":"Robert V Knox","doi":"10.1016/j.anireprosci.2024.107537","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change has been linked to increasing temperatures and weather extremes. Certain regions around the world become more susceptible to environmental hazards that limit pig production and reproductive fertility. Environmental measures that link to pig fertility are needed to assess change, risk and develop solutions. Sub-populations of pigs display lower fertility in summer and are susceptible to heat stress. In the context of a warming climate, elevated temperatures and number of heat stress days increase body temperature and change the physiology, behavior, feed intake, and stress response of the pig. These changes could alter follicle development, oocyte quality, estrus expression, conception and litter size. In boars, sperm quality and production are reduced in response to summer heat stress. Nevertheless, while temperature increases have occurred over the years in some warmer locations, other regions have not shown those changes. Perhaps this involves the measures used for heat stress assessment or that climate is buffered in more temperate areas. Reductions in pig fertility are not always evident, and depend upon climate, year, genotype and management. This could also involve selection, as females more susceptible to heat stress and fertility failure, are subsequently culled. In the years from 1999 to 2020 when increases in global temperature from baseline occurred, measures of female fertility improved for farrowing rate and litter size. Progressive reduction in fertility may not be apparent in all geo-locations, but as temperatures increases become more widespread, these changes are likely to become more obvious and detectable.</p>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swine fertility in a changing climate.\",\"authors\":\"Robert V Knox\",\"doi\":\"10.1016/j.anireprosci.2024.107537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change has been linked to increasing temperatures and weather extremes. Certain regions around the world become more susceptible to environmental hazards that limit pig production and reproductive fertility. Environmental measures that link to pig fertility are needed to assess change, risk and develop solutions. Sub-populations of pigs display lower fertility in summer and are susceptible to heat stress. In the context of a warming climate, elevated temperatures and number of heat stress days increase body temperature and change the physiology, behavior, feed intake, and stress response of the pig. These changes could alter follicle development, oocyte quality, estrus expression, conception and litter size. In boars, sperm quality and production are reduced in response to summer heat stress. Nevertheless, while temperature increases have occurred over the years in some warmer locations, other regions have not shown those changes. Perhaps this involves the measures used for heat stress assessment or that climate is buffered in more temperate areas. Reductions in pig fertility are not always evident, and depend upon climate, year, genotype and management. This could also involve selection, as females more susceptible to heat stress and fertility failure, are subsequently culled. In the years from 1999 to 2020 when increases in global temperature from baseline occurred, measures of female fertility improved for farrowing rate and litter size. Progressive reduction in fertility may not be apparent in all geo-locations, but as temperatures increases become more widespread, these changes are likely to become more obvious and detectable.</p>\",\"PeriodicalId\":7880,\"journal\":{\"name\":\"Animal Reproduction Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Reproduction Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.anireprosci.2024.107537\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.anireprosci.2024.107537","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

气候变化与气温升高和极端天气有关。全球某些地区变得更容易受到环境危害的影响,从而限制了猪的生产和繁殖力。需要采取与猪的繁殖力相关的环境措施,以评估变化、风险并制定解决方案。猪的亚群在夏季繁殖力较低,容易受到热应激的影响。在气候变暖的背景下,温度升高和热应激日数增加会使体温升高,并改变猪的生理、行为、采食量和应激反应。这些变化可能会改变卵泡发育、卵母细胞质量、发情表现、受孕和产仔数。公猪的精子质量和产量会因夏季热应激而下降。然而,尽管多年来一些温暖地区的气温有所上升,但其他地区却没有出现这种变化。这可能与热应激评估所采用的措施有关,也可能与温带地区的气候缓冲有关。猪的繁殖力下降并不总是很明显,这取决于气候、年份、基因型和管理。这也可能与选择有关,因为更容易受到热应激和繁殖力衰退影响的母猪随后会被淘汰。从 1999 年到 2020 年,当全球气温从基线上升时,雌性繁殖力在产仔率和产仔数方面都有所提高。生育力的逐步下降可能不会在所有地理位置都很明显,但随着气温的升高变得越来越普遍,这些变化可能会变得更加明显,也更容易被检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Swine fertility in a changing climate.

Climate change has been linked to increasing temperatures and weather extremes. Certain regions around the world become more susceptible to environmental hazards that limit pig production and reproductive fertility. Environmental measures that link to pig fertility are needed to assess change, risk and develop solutions. Sub-populations of pigs display lower fertility in summer and are susceptible to heat stress. In the context of a warming climate, elevated temperatures and number of heat stress days increase body temperature and change the physiology, behavior, feed intake, and stress response of the pig. These changes could alter follicle development, oocyte quality, estrus expression, conception and litter size. In boars, sperm quality and production are reduced in response to summer heat stress. Nevertheless, while temperature increases have occurred over the years in some warmer locations, other regions have not shown those changes. Perhaps this involves the measures used for heat stress assessment or that climate is buffered in more temperate areas. Reductions in pig fertility are not always evident, and depend upon climate, year, genotype and management. This could also involve selection, as females more susceptible to heat stress and fertility failure, are subsequently culled. In the years from 1999 to 2020 when increases in global temperature from baseline occurred, measures of female fertility improved for farrowing rate and litter size. Progressive reduction in fertility may not be apparent in all geo-locations, but as temperatures increases become more widespread, these changes are likely to become more obvious and detectable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Reproduction Science
Animal Reproduction Science 农林科学-奶制品与动物科学
CiteScore
4.50
自引率
9.10%
发文量
136
审稿时长
54 days
期刊介绍: Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction. The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques. The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.
期刊最新文献
Insights into crucial molecules and protein channels involved in pig sperm cryopreservation. High water temperature triggers early sexual maturation in the juvenile red spotted grouper Epinephelus akaara: Via regulation of reproduction-related hormones in the brain-pituitary-gonadal axis In mares resistant to endometrial infection, periovulatory treatment with ecbolic drugs does not influence uterine clearance or luteal development Genomic, transcriptomic and epigenomic analysis towards the understanding of porcine semen quality traits. Past, current and future trends. Evaluation of sperm quality and male fertility: The use of molecular markers in boar sperm and seminal plasma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1