植物抗菌剂在食品工业中的新兴应用。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current pharmaceutical biotechnology Pub Date : 2024-06-25 DOI:10.2174/0113892010310982240613055746
Parul Grover, Monika Bhardwaj, Anjleena Malhotra, Ram Sharma, Anuj Pathak, Carlo Genovese, Sandeep Kumar, Suman Rohilla
{"title":"植物抗菌剂在食品工业中的新兴应用。","authors":"Parul Grover, Monika Bhardwaj, Anjleena Malhotra, Ram Sharma, Anuj Pathak, Carlo Genovese, Sandeep Kumar, Suman Rohilla","doi":"10.2174/0113892010310982240613055746","DOIUrl":null,"url":null,"abstract":"<p><p>Food safety is a global concern with significant public health implications. Improper food handling can harbor a wide range of pathogenic organisms. Antimicrobial agents are crucial for controlling microbes and ensuring food safety and human health. The growing demand for natural, safe, and sustainable food preservation methods has driven research into using plant antimicrobials as alternatives to synthetic preservatives. The food industry is now exploring innovative approaches that combine various physical methods with multiple natural antimicrobials. This review aims to outline the evolving applications of plant antimicrobials in the food industry. It discusses strategies for managing bacteria and categorizes different plant antimicrobials, providing insights into their mechanisms of action and structures. This review offers a comprehensive overview of antimicrobial peptides (AMPs), detailing their structural characteristics, mechanisms of action, various types, and applications in food packaging fabrication and explaining how they contribute to food preservation. It highlights the synergistic and additive benefits of plant antimicrobials and their successful integration with food technologies like nanotechnology, which enhances the hurdle effect, improving food safety and extending shelf life. The review also emphasizes the importance of antimicrobial peptides and the need for further research in this area. Safety assessment and regulatory considerations are discussed as well. By addressing these gaps, plant antimicrobials have the potential to pave the way for more effective, safe, and sustainable food preservation strategies in the future.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Applications of Plant Antimicrobials in the Food Industry.\",\"authors\":\"Parul Grover, Monika Bhardwaj, Anjleena Malhotra, Ram Sharma, Anuj Pathak, Carlo Genovese, Sandeep Kumar, Suman Rohilla\",\"doi\":\"10.2174/0113892010310982240613055746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food safety is a global concern with significant public health implications. Improper food handling can harbor a wide range of pathogenic organisms. Antimicrobial agents are crucial for controlling microbes and ensuring food safety and human health. The growing demand for natural, safe, and sustainable food preservation methods has driven research into using plant antimicrobials as alternatives to synthetic preservatives. The food industry is now exploring innovative approaches that combine various physical methods with multiple natural antimicrobials. This review aims to outline the evolving applications of plant antimicrobials in the food industry. It discusses strategies for managing bacteria and categorizes different plant antimicrobials, providing insights into their mechanisms of action and structures. This review offers a comprehensive overview of antimicrobial peptides (AMPs), detailing their structural characteristics, mechanisms of action, various types, and applications in food packaging fabrication and explaining how they contribute to food preservation. It highlights the synergistic and additive benefits of plant antimicrobials and their successful integration with food technologies like nanotechnology, which enhances the hurdle effect, improving food safety and extending shelf life. The review also emphasizes the importance of antimicrobial peptides and the need for further research in this area. Safety assessment and regulatory considerations are discussed as well. By addressing these gaps, plant antimicrobials have the potential to pave the way for more effective, safe, and sustainable food preservation strategies in the future.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010310982240613055746\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010310982240613055746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食品安全是一个全球关注的问题,对公众健康具有重大影响。食品处理不当会滋生多种致病微生物。抗菌剂对于控制微生物、确保食品安全和人类健康至关重要。人们对天然、安全和可持续食品保存方法的需求日益增长,这推动了使用植物抗菌剂替代合成防腐剂的研究。食品行业目前正在探索将各种物理方法与多种天然抗菌剂相结合的创新方法。本综述旨在概述植物抗菌剂在食品工业中不断发展的应用。它讨论了管理细菌的策略,并对不同的植物抗菌剂进行了分类,深入探讨了它们的作用机制和结构。本综述全面概述了抗菌肽(AMPs),详细介绍了它们的结构特点、作用机制、各种类型以及在食品包装制造中的应用,并解释了它们如何有助于食品保存。书中强调了植物抗菌剂的协同增效作用,以及它们与纳米技术等食品技术的成功结合,从而增强了屏障效应,提高了食品安全并延长了保质期。综述还强调了抗菌肽的重要性以及在这一领域开展进一步研究的必要性。此外,还讨论了安全评估和监管方面的考虑因素。通过弥补这些不足,植物抗菌剂有可能为未来更有效、安全和可持续的食品保存策略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emerging Applications of Plant Antimicrobials in the Food Industry.

Food safety is a global concern with significant public health implications. Improper food handling can harbor a wide range of pathogenic organisms. Antimicrobial agents are crucial for controlling microbes and ensuring food safety and human health. The growing demand for natural, safe, and sustainable food preservation methods has driven research into using plant antimicrobials as alternatives to synthetic preservatives. The food industry is now exploring innovative approaches that combine various physical methods with multiple natural antimicrobials. This review aims to outline the evolving applications of plant antimicrobials in the food industry. It discusses strategies for managing bacteria and categorizes different plant antimicrobials, providing insights into their mechanisms of action and structures. This review offers a comprehensive overview of antimicrobial peptides (AMPs), detailing their structural characteristics, mechanisms of action, various types, and applications in food packaging fabrication and explaining how they contribute to food preservation. It highlights the synergistic and additive benefits of plant antimicrobials and their successful integration with food technologies like nanotechnology, which enhances the hurdle effect, improving food safety and extending shelf life. The review also emphasizes the importance of antimicrobial peptides and the need for further research in this area. Safety assessment and regulatory considerations are discussed as well. By addressing these gaps, plant antimicrobials have the potential to pave the way for more effective, safe, and sustainable food preservation strategies in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Dihydroartemisinin Modulates Prostate Cancer Progression by Regulating Multiple Genes via the Transcription Factor NR2F2. Extraction, Isolation, Characterization, and Development of Phospholipids Complex Nanocarrier for Improved Solubility, Antiasthmatic, and Pharmacokinetic Potential of Curcuminoids. A Liquid Band-Aid with Mesenchymal Stem Cell-Derived Exosomes for Wound Healing in Mice. Ampullaviruses: From Extreme Environments to Biotechnological Innovation. Biomarkers and Novel Therapies of Diabetic Neuropathy: An Updated Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1