Bita Taghizadeh , Reza Moradi , Farshad Mirzavi , Mehdi Barati , Anvar Soleimani , Mahmoud-Reza Jaafari , Nosratollah Zarghami
{"title":"紫外线 B 暴露后人体生长激素对皮肤细胞的保护作用。","authors":"Bita Taghizadeh , Reza Moradi , Farshad Mirzavi , Mehdi Barati , Anvar Soleimani , Mahmoud-Reza Jaafari , Nosratollah Zarghami","doi":"10.1016/j.jphotobiol.2024.112961","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers.</p></div><div><h3>Objective</h3><p>This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage.</p></div><div><h3>Methods</h3><p>The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure.</p></div><div><h3>Results</h3><p>We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation.</p></div><div><h3>Conclusion</h3><p>These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"257 ","pages":"Article 112961"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The protection role of human growth hormone on skin cells following ultraviolet B exposure\",\"authors\":\"Bita Taghizadeh , Reza Moradi , Farshad Mirzavi , Mehdi Barati , Anvar Soleimani , Mahmoud-Reza Jaafari , Nosratollah Zarghami\",\"doi\":\"10.1016/j.jphotobiol.2024.112961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers.</p></div><div><h3>Objective</h3><p>This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage.</p></div><div><h3>Methods</h3><p>The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure.</p></div><div><h3>Results</h3><p>We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation.</p></div><div><h3>Conclusion</h3><p>These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.</p></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"257 \",\"pages\":\"Article 112961\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134424001210\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424001210","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The protection role of human growth hormone on skin cells following ultraviolet B exposure
Background
Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers.
Objective
This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage.
Methods
The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure.
Results
We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation.
Conclusion
These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.