Alireza Aghamalizadeh , Adel Mazloumi , Ahmad Nikabadi , Ali Nahvi , Farin Khanehshenas , Serajeddin Ebrahimian
{"title":"驾驶员昏昏欲睡与面部热模式改变有关:热成像方法的机器学习启示。","authors":"Alireza Aghamalizadeh , Adel Mazloumi , Ahmad Nikabadi , Ali Nahvi , Farin Khanehshenas , Serajeddin Ebrahimian","doi":"10.1016/j.physbeh.2024.114619","DOIUrl":null,"url":null,"abstract":"<div><p>Driver drowsiness is a significant factor in road accidents. Thermal imaging has emerged as an effective tool for detecting drowsiness by enabling the analysis of facial thermal patterns. However, it is not clear which facial areas are most affected and correlate most strongly with drowsiness. This study examines the variations and importance of various facial areas and proposes an approach for detecting driver drowsiness. Twenty participants underwent tests in a driving simulator, and temperature changes in various facial regions were measured. The random forest method was employed to evaluate the importance of each facial region. The results revealed that temperature changes in the nasal area exhibited the highest value, while the eyes had the most correlated changes with drowsiness. Furthermore, drowsiness was classified with an accuracy of 88 % utilizing thermal variations in the facial region identified as the most important regions by the random forest feature importance model. These findings provide a comprehensive overview of facial thermal imaging for detecting driver drowsiness and introduce eye temperature as a novel and effective measure for investigating cognitive activities.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driver drowsiness is associated with altered facial thermal patterns: Machine learning insights from a thermal imaging approach\",\"authors\":\"Alireza Aghamalizadeh , Adel Mazloumi , Ahmad Nikabadi , Ali Nahvi , Farin Khanehshenas , Serajeddin Ebrahimian\",\"doi\":\"10.1016/j.physbeh.2024.114619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Driver drowsiness is a significant factor in road accidents. Thermal imaging has emerged as an effective tool for detecting drowsiness by enabling the analysis of facial thermal patterns. However, it is not clear which facial areas are most affected and correlate most strongly with drowsiness. This study examines the variations and importance of various facial areas and proposes an approach for detecting driver drowsiness. Twenty participants underwent tests in a driving simulator, and temperature changes in various facial regions were measured. The random forest method was employed to evaluate the importance of each facial region. The results revealed that temperature changes in the nasal area exhibited the highest value, while the eyes had the most correlated changes with drowsiness. Furthermore, drowsiness was classified with an accuracy of 88 % utilizing thermal variations in the facial region identified as the most important regions by the random forest feature importance model. These findings provide a comprehensive overview of facial thermal imaging for detecting driver drowsiness and introduce eye temperature as a novel and effective measure for investigating cognitive activities.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031938424001641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938424001641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Driver drowsiness is associated with altered facial thermal patterns: Machine learning insights from a thermal imaging approach
Driver drowsiness is a significant factor in road accidents. Thermal imaging has emerged as an effective tool for detecting drowsiness by enabling the analysis of facial thermal patterns. However, it is not clear which facial areas are most affected and correlate most strongly with drowsiness. This study examines the variations and importance of various facial areas and proposes an approach for detecting driver drowsiness. Twenty participants underwent tests in a driving simulator, and temperature changes in various facial regions were measured. The random forest method was employed to evaluate the importance of each facial region. The results revealed that temperature changes in the nasal area exhibited the highest value, while the eyes had the most correlated changes with drowsiness. Furthermore, drowsiness was classified with an accuracy of 88 % utilizing thermal variations in the facial region identified as the most important regions by the random forest feature importance model. These findings provide a comprehensive overview of facial thermal imaging for detecting driver drowsiness and introduce eye temperature as a novel and effective measure for investigating cognitive activities.