低幅射存储环的非线性优化。

IF 2.5 3区 物理与天体物理 Journal of Synchrotron Radiation Pub Date : 2024-07-01 Epub Date: 2024-06-25 DOI:10.1107/S1600577524004569
Bonghoon Oh, Jinjoo Ko, Seunghwan Shin, Jaehyun Kim, Jaeyu Lee, Gyeongsu Jang
{"title":"低幅射存储环的非线性优化。","authors":"Bonghoon Oh, Jinjoo Ko, Seunghwan Shin, Jaehyun Kim, Jaeyu Lee, Gyeongsu Jang","doi":"10.1107/S1600577524004569","DOIUrl":null,"url":null,"abstract":"<p><p>A multi-objective genetic algorithm (MOGA) is a powerful global optimization tool, but its results are considerably affected by the crossover parameter η<sub>c</sub>. Finding an appropriate η<sub>c</sub> demands too much computing time because MOGA needs be run several times in order to find a good η<sub>c</sub>. In this paper, a self-adaptive crossover parameter is introduced in a strategy to adopt a new η<sub>c</sub> for every generation while running MOGA. This new scheme has also been adopted for a multi-generation Gaussian process optimization (MGGPO) when producing trial solutions. Compared with the existing MGGPO and MOGA, the MGGPO and MOGA with the new strategy show better performance in nonlinear optimization for the design of low-emittance storage rings.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonlinear optimization for a low-emittance storage ring.\",\"authors\":\"Bonghoon Oh, Jinjoo Ko, Seunghwan Shin, Jaehyun Kim, Jaeyu Lee, Gyeongsu Jang\",\"doi\":\"10.1107/S1600577524004569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A multi-objective genetic algorithm (MOGA) is a powerful global optimization tool, but its results are considerably affected by the crossover parameter η<sub>c</sub>. Finding an appropriate η<sub>c</sub> demands too much computing time because MOGA needs be run several times in order to find a good η<sub>c</sub>. In this paper, a self-adaptive crossover parameter is introduced in a strategy to adopt a new η<sub>c</sub> for every generation while running MOGA. This new scheme has also been adopted for a multi-generation Gaussian process optimization (MGGPO) when producing trial solutions. Compared with the existing MGGPO and MOGA, the MGGPO and MOGA with the new strategy show better performance in nonlinear optimization for the design of low-emittance storage rings.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524004569\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524004569","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多目标遗传算法(MOGA)是一种强大的全局优化工具,但其结果受交叉参数ηc的影响很大。要找到一个合适的 ηc 需要耗费大量计算时间,因为 MOGA 需要运行多次才能找到一个好的ηc。本文引入了一个自适应交叉参数,在运行 MOGA 的过程中,每一代都采用一个新的ηc。多代高斯过程优化(MGGPO)在生成试验解时也采用了这一新方案。与现有的 MGGPO 和 MOGA 相比,采用新策略的 MGGPO 和 MOGA 在设计低幅射存储环的非线性优化中表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear optimization for a low-emittance storage ring.

A multi-objective genetic algorithm (MOGA) is a powerful global optimization tool, but its results are considerably affected by the crossover parameter ηc. Finding an appropriate ηc demands too much computing time because MOGA needs be run several times in order to find a good ηc. In this paper, a self-adaptive crossover parameter is introduced in a strategy to adopt a new ηc for every generation while running MOGA. This new scheme has also been adopted for a multi-generation Gaussian process optimization (MGGPO) when producing trial solutions. Compared with the existing MGGPO and MOGA, the MGGPO and MOGA with the new strategy show better performance in nonlinear optimization for the design of low-emittance storage rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Celebrating JSR's 30th anniversary: reminiscences of a Main Editor. Coprecipitation of Ce(III) oxide with UO2. High-transmission spectrometer for rapid resonant inelastic soft X-ray scattering (rRIXS) maps. X-ray ghost imaging with a specially developed beam splitter. Foreword to the special virtual issue dedicated to the proceedings of the PhotonMEADOW2023 Joint Workshop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1