Jéssica Leite, Fabiano Nhoatto, Antonio Jacob, Roberto Santana, Fábio Lobato
{"title":"神经元形态计量分析的计算工具:系统搜索与回顾。","authors":"Jéssica Leite, Fabiano Nhoatto, Antonio Jacob, Roberto Santana, Fábio Lobato","doi":"10.1007/s12021-024-09674-6","DOIUrl":null,"url":null,"abstract":"<p><p>Morphometry is fundamental for studying and correlating neuronal morphology with brain functions. With increasing computational power, it is possible to extract morphometric characteristics automatically, including features such as length, volume, and number of neuron branches. However, to the best of our knowledge, there is no mapping of morphometric tools yet. In this context, we conducted a systematic search and review to identify and analyze tools within the scope of neuron analysis. Thus, the work followed a well-defined protocol and sought to answer the following research questions: What open-source tools are available for neuronal morphometric analysis? What morphometric characteristics are extracted by these tools? For this, aiming for greater robustness and coverage, the study was based on the paper analysis as well as the study of documentation and tests with the tools available in repositories. We analyzed 1,586 papers and mapped 23 tools, where NeuroM, L-Measure, and NeuroMorphoVis extract the most features. Furthermore, we contribute to the body of knowledge with the unprecedented presentation of 150 unique morphometric features whose terminologies were categorized and standardized. Overall, the study contributes to advancing the understanding of the complex mechanisms underlying the brain.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"353-377"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Tools for Neuronal Morphometric Analysis: A Systematic Search and Review.\",\"authors\":\"Jéssica Leite, Fabiano Nhoatto, Antonio Jacob, Roberto Santana, Fábio Lobato\",\"doi\":\"10.1007/s12021-024-09674-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morphometry is fundamental for studying and correlating neuronal morphology with brain functions. With increasing computational power, it is possible to extract morphometric characteristics automatically, including features such as length, volume, and number of neuron branches. However, to the best of our knowledge, there is no mapping of morphometric tools yet. In this context, we conducted a systematic search and review to identify and analyze tools within the scope of neuron analysis. Thus, the work followed a well-defined protocol and sought to answer the following research questions: What open-source tools are available for neuronal morphometric analysis? What morphometric characteristics are extracted by these tools? For this, aiming for greater robustness and coverage, the study was based on the paper analysis as well as the study of documentation and tests with the tools available in repositories. We analyzed 1,586 papers and mapped 23 tools, where NeuroM, L-Measure, and NeuroMorphoVis extract the most features. Furthermore, we contribute to the body of knowledge with the unprecedented presentation of 150 unique morphometric features whose terminologies were categorized and standardized. Overall, the study contributes to advancing the understanding of the complex mechanisms underlying the brain.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\" \",\"pages\":\"353-377\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09674-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09674-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational Tools for Neuronal Morphometric Analysis: A Systematic Search and Review.
Morphometry is fundamental for studying and correlating neuronal morphology with brain functions. With increasing computational power, it is possible to extract morphometric characteristics automatically, including features such as length, volume, and number of neuron branches. However, to the best of our knowledge, there is no mapping of morphometric tools yet. In this context, we conducted a systematic search and review to identify and analyze tools within the scope of neuron analysis. Thus, the work followed a well-defined protocol and sought to answer the following research questions: What open-source tools are available for neuronal morphometric analysis? What morphometric characteristics are extracted by these tools? For this, aiming for greater robustness and coverage, the study was based on the paper analysis as well as the study of documentation and tests with the tools available in repositories. We analyzed 1,586 papers and mapped 23 tools, where NeuroM, L-Measure, and NeuroMorphoVis extract the most features. Furthermore, we contribute to the body of knowledge with the unprecedented presentation of 150 unique morphometric features whose terminologies were categorized and standardized. Overall, the study contributes to advancing the understanding of the complex mechanisms underlying the brain.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.