Kar-Tong Tan, Michael K Slevin, Mitchell L Leibowitz, Max Garrity-Janger, Jidong Shan, Heng Li, Matthew Meyerson
{"title":"长线程测序揭示癌症基因组中的新端粒和跨端粒染色体臂融合。","authors":"Kar-Tong Tan, Michael K Slevin, Mitchell L Leibowitz, Max Garrity-Janger, Jidong Shan, Heng Li, Matthew Meyerson","doi":"10.1016/j.xgen.2024.100588","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100588"},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing.\",\"authors\":\"Kar-Tong Tan, Michael K Slevin, Mitchell L Leibowitz, Max Garrity-Janger, Jidong Shan, Heng Li, Matthew Meyerson\",\"doi\":\"10.1016/j.xgen.2024.100588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100588\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing.
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.