Haosong He, Ashley Fly, Edward Barbour, Xiangjie Chen
{"title":"从温度梯度和电气连接拓扑结构看锂离子电池模块级不均匀老化的数值研究","authors":"Haosong He, Ashley Fly, Edward Barbour, Xiangjie Chen","doi":"10.1038/s44172-024-00222-3","DOIUrl":null,"url":null,"abstract":"The distribution of current/voltage can be further regulated by optimising the electrical connection topology, considering a particular battery thermal management systems. This study numerically investigates a 4P6S battery module with two connection topologies: 1) a straight connection topology, where the sub-modules consist of parallel-connected cells that are serial connected in a linear configuration, and 2) a parallelogram connection topology, where the sub-modules are serial connected in a parallelogram configuration. We find that the straight topology is more advantageous, as it allows the temperature gradient to be distributed among the parallel-connected cells in the sub-modules, mitigating over(dis)charging. Consequently, it achieves a 0.8% higher effective capacity than the parallelogram topology at 1C discharge, along with a higher state of health at 80.15% compared to 80% for the parallelogram topology. Notably, the straight topology results in a maximum current maldistribution of 0.24C at 1C discharge, which is considered an acceptable trade-off. Haosong He and co-authors study the impact of topology on the battery thermal management. They find the straight topology leads to more even distribution of temperature gradients among sub-modules, mitigating the over(dis)charging issue.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00222-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of module-level inhomogeneous ageing in lithium-ion batteries from temperature gradients and electrical connection topologies\",\"authors\":\"Haosong He, Ashley Fly, Edward Barbour, Xiangjie Chen\",\"doi\":\"10.1038/s44172-024-00222-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of current/voltage can be further regulated by optimising the electrical connection topology, considering a particular battery thermal management systems. This study numerically investigates a 4P6S battery module with two connection topologies: 1) a straight connection topology, where the sub-modules consist of parallel-connected cells that are serial connected in a linear configuration, and 2) a parallelogram connection topology, where the sub-modules are serial connected in a parallelogram configuration. We find that the straight topology is more advantageous, as it allows the temperature gradient to be distributed among the parallel-connected cells in the sub-modules, mitigating over(dis)charging. Consequently, it achieves a 0.8% higher effective capacity than the parallelogram topology at 1C discharge, along with a higher state of health at 80.15% compared to 80% for the parallelogram topology. Notably, the straight topology results in a maximum current maldistribution of 0.24C at 1C discharge, which is considered an acceptable trade-off. Haosong He and co-authors study the impact of topology on the battery thermal management. They find the straight topology leads to more even distribution of temperature gradients among sub-modules, mitigating the over(dis)charging issue.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00222-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00222-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00222-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical investigation of module-level inhomogeneous ageing in lithium-ion batteries from temperature gradients and electrical connection topologies
The distribution of current/voltage can be further regulated by optimising the electrical connection topology, considering a particular battery thermal management systems. This study numerically investigates a 4P6S battery module with two connection topologies: 1) a straight connection topology, where the sub-modules consist of parallel-connected cells that are serial connected in a linear configuration, and 2) a parallelogram connection topology, where the sub-modules are serial connected in a parallelogram configuration. We find that the straight topology is more advantageous, as it allows the temperature gradient to be distributed among the parallel-connected cells in the sub-modules, mitigating over(dis)charging. Consequently, it achieves a 0.8% higher effective capacity than the parallelogram topology at 1C discharge, along with a higher state of health at 80.15% compared to 80% for the parallelogram topology. Notably, the straight topology results in a maximum current maldistribution of 0.24C at 1C discharge, which is considered an acceptable trade-off. Haosong He and co-authors study the impact of topology on the battery thermal management. They find the straight topology leads to more even distribution of temperature gradients among sub-modules, mitigating the over(dis)charging issue.