Christopher N. Mkono, Chuanbo Shen, Alvin K. Mulashani, Mbega Ramadhani Ngata, Wakeel Hussain
{"title":"用于估算东非曼德瓦盆地源岩热成熟度的新型混合机器学习方法和盆地模型","authors":"Christopher N. Mkono, Chuanbo Shen, Alvin K. Mulashani, Mbega Ramadhani Ngata, Wakeel Hussain","doi":"10.1007/s11053-024-10372-y","DOIUrl":null,"url":null,"abstract":"<p>Basin modeling and thermal maturity estimation are crucial for understanding sedimentary basin evolution and hydrocarbon potential. Assessing thermal maturity in the oil and gas industry is vital during exploration. With artificial intelligence advancements, more accurate evaluation of hydrocarbon source rocks and efficient thermal maturity estimation are possible. This study employed 1D basin modeling using PetroMod and a novel hybrid group method of data handling (GMDH) neural network optimized by a differential evolution (DE) algorithm to estimate thermal maturity (Tmax) and assess kerogen type in Triassic–Jurassic source rocks of the Mandawa Basin, Tanzania. The GMDH–DE addresses the limitations of conventional methods by offering a data-driven approach that reduces computational time, overcomes overfitting, and improves accuracy. The 1D thermal maturity basin modeling suggests that the Mbuo source rocks reached the gas–oil window in late Triassic times and began expulsion in the early Jurassic while located in an immature-to-mature zone. The GMDH–DE model effectively estimated Tmax with high coefficient of determination (<i>R</i><sup>2</sup> = 0.9946), low root mean square error (RMSE = 0.004), and mean absolute error (MAE = 0.006) during training. When tested on unseen data, the GMDH–DE model yielded an <i>R</i><sup>2</sup> of 0.9703, RMSE of 0.017, and MAE of 0.025. Moreover, GMDH–DE reduced the computational time by 94% during training and 87% during testing. The results demonstrated the model’s exceptional reliability compared to the benchmark methods such as artificial neural network–particle swarm optimization and principal component analysis coupled with artificial neural network. The GMDH–DE Tmax model offers a unique and independent approach for rapid real-time determination of Tmax values in organic matter, promoting efficient resource assessment in oil and gas exploration.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"36 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hybrid Machine Learning Approach and Basin Modeling for Thermal Maturity Estimation of Source Rocks in Mandawa Basin, East Africa\",\"authors\":\"Christopher N. Mkono, Chuanbo Shen, Alvin K. Mulashani, Mbega Ramadhani Ngata, Wakeel Hussain\",\"doi\":\"10.1007/s11053-024-10372-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Basin modeling and thermal maturity estimation are crucial for understanding sedimentary basin evolution and hydrocarbon potential. Assessing thermal maturity in the oil and gas industry is vital during exploration. With artificial intelligence advancements, more accurate evaluation of hydrocarbon source rocks and efficient thermal maturity estimation are possible. This study employed 1D basin modeling using PetroMod and a novel hybrid group method of data handling (GMDH) neural network optimized by a differential evolution (DE) algorithm to estimate thermal maturity (Tmax) and assess kerogen type in Triassic–Jurassic source rocks of the Mandawa Basin, Tanzania. The GMDH–DE addresses the limitations of conventional methods by offering a data-driven approach that reduces computational time, overcomes overfitting, and improves accuracy. The 1D thermal maturity basin modeling suggests that the Mbuo source rocks reached the gas–oil window in late Triassic times and began expulsion in the early Jurassic while located in an immature-to-mature zone. The GMDH–DE model effectively estimated Tmax with high coefficient of determination (<i>R</i><sup>2</sup> = 0.9946), low root mean square error (RMSE = 0.004), and mean absolute error (MAE = 0.006) during training. When tested on unseen data, the GMDH–DE model yielded an <i>R</i><sup>2</sup> of 0.9703, RMSE of 0.017, and MAE of 0.025. Moreover, GMDH–DE reduced the computational time by 94% during training and 87% during testing. The results demonstrated the model’s exceptional reliability compared to the benchmark methods such as artificial neural network–particle swarm optimization and principal component analysis coupled with artificial neural network. The GMDH–DE Tmax model offers a unique and independent approach for rapid real-time determination of Tmax values in organic matter, promoting efficient resource assessment in oil and gas exploration.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10372-y\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10372-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel Hybrid Machine Learning Approach and Basin Modeling for Thermal Maturity Estimation of Source Rocks in Mandawa Basin, East Africa
Basin modeling and thermal maturity estimation are crucial for understanding sedimentary basin evolution and hydrocarbon potential. Assessing thermal maturity in the oil and gas industry is vital during exploration. With artificial intelligence advancements, more accurate evaluation of hydrocarbon source rocks and efficient thermal maturity estimation are possible. This study employed 1D basin modeling using PetroMod and a novel hybrid group method of data handling (GMDH) neural network optimized by a differential evolution (DE) algorithm to estimate thermal maturity (Tmax) and assess kerogen type in Triassic–Jurassic source rocks of the Mandawa Basin, Tanzania. The GMDH–DE addresses the limitations of conventional methods by offering a data-driven approach that reduces computational time, overcomes overfitting, and improves accuracy. The 1D thermal maturity basin modeling suggests that the Mbuo source rocks reached the gas–oil window in late Triassic times and began expulsion in the early Jurassic while located in an immature-to-mature zone. The GMDH–DE model effectively estimated Tmax with high coefficient of determination (R2 = 0.9946), low root mean square error (RMSE = 0.004), and mean absolute error (MAE = 0.006) during training. When tested on unseen data, the GMDH–DE model yielded an R2 of 0.9703, RMSE of 0.017, and MAE of 0.025. Moreover, GMDH–DE reduced the computational time by 94% during training and 87% during testing. The results demonstrated the model’s exceptional reliability compared to the benchmark methods such as artificial neural network–particle swarm optimization and principal component analysis coupled with artificial neural network. The GMDH–DE Tmax model offers a unique and independent approach for rapid real-time determination of Tmax values in organic matter, promoting efficient resource assessment in oil and gas exploration.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.