操作电化学核磁共振光谱揭示了水辅助甲酸盐形成机制

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-10-10 DOI:10.1016/j.chempr.2024.06.001
{"title":"操作电化学核磁共振光谱揭示了水辅助甲酸盐形成机制","authors":"","doi":"10.1016/j.chempr.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>The affinity of oxygen (O)-bound species is a key factor in CO<sub>2</sub> reduction (CO<sub>2</sub>R) reactions (including C<sub>1</sub> and C<sub>2+</sub> products), although existing experimental methods cannot quantitatively track the O atoms active within CO<sub>2</sub>R reactions in real time. Among the diversified products from CO<sub>2</sub>R reactions, the formate (HCOO<sup>−</sup>) possesses the highest profit per mole of electrons. Here, we report an <span><em>operando</em></span><span> electrochemical nuclear magnetic resonance (NMR) method, which allows to quantitatively describe the complex species containing O atoms during the electrochemical CO</span><sub>2</sub>R reactions. Based on Cu and bimetallic Cu-based materials (Bi<sub>2</sub>CuO<sub>4</sub> and In<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>) systems, we found that by introducing Bi and In metal adsorption sites, the O atoms of adsorbed H<sub>2</sub>O can directly involve in the formation of HCOO<sup>−</sup> through a water-assisted mechanism (∗COOH<sup>−</sup><span> regeneration), thereby improving the selectivity of liquid HCOO</span><sup>−</sup> product mostly from 34.2% to 98%. This strategy gives valuable insights into the design of HCOO<sup>−</sup>-favored catalysts.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3114-3130"},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism\",\"authors\":\"\",\"doi\":\"10.1016/j.chempr.2024.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The affinity of oxygen (O)-bound species is a key factor in CO<sub>2</sub> reduction (CO<sub>2</sub>R) reactions (including C<sub>1</sub> and C<sub>2+</sub> products), although existing experimental methods cannot quantitatively track the O atoms active within CO<sub>2</sub>R reactions in real time. Among the diversified products from CO<sub>2</sub>R reactions, the formate (HCOO<sup>−</sup>) possesses the highest profit per mole of electrons. Here, we report an <span><em>operando</em></span><span> electrochemical nuclear magnetic resonance (NMR) method, which allows to quantitatively describe the complex species containing O atoms during the electrochemical CO</span><sub>2</sub>R reactions. Based on Cu and bimetallic Cu-based materials (Bi<sub>2</sub>CuO<sub>4</sub> and In<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>) systems, we found that by introducing Bi and In metal adsorption sites, the O atoms of adsorbed H<sub>2</sub>O can directly involve in the formation of HCOO<sup>−</sup> through a water-assisted mechanism (∗COOH<sup>−</sup><span> regeneration), thereby improving the selectivity of liquid HCOO</span><sup>−</sup> product mostly from 34.2% to 98%. This strategy gives valuable insights into the design of HCOO<sup>−</sup>-favored catalysts.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 10\",\"pages\":\"Pages 3114-3130\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424002481\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002481","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与氧(O)结合的物种的亲和力是二氧化碳还原(CO2R)反应(包括 C1 和 C2+ 产物)中的一个关键因素,尽管现有的实验方法无法实时定量跟踪在 CO2R 反应中活跃的 O 原子。在 CO2R 反应的多种产物中,甲酸盐(HCOO-)每摩尔电子的利润最高。在此,我们报告了一种操作电化学核磁共振(NMR)方法,该方法可定量描述电化学 CO2R 反应过程中含有 O 原子的复杂物种。基于铜和双金属铜基材料(Bi2CuO4 和 In2Cu2O5)体系,我们发现通过引入 Bi 和 In 金属吸附位点,吸附 H2O 的 O 原子可通过水辅助机制(∗COOH- 再生)直接参与 HCOO- 的形成,从而将液态 HCOO- 产物的选择性从 34.2% 提高到 98%。这一策略为设计 HCOO 偏好催化剂提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism
The affinity of oxygen (O)-bound species is a key factor in CO2 reduction (CO2R) reactions (including C1 and C2+ products), although existing experimental methods cannot quantitatively track the O atoms active within CO2R reactions in real time. Among the diversified products from CO2R reactions, the formate (HCOO) possesses the highest profit per mole of electrons. Here, we report an operando electrochemical nuclear magnetic resonance (NMR) method, which allows to quantitatively describe the complex species containing O atoms during the electrochemical CO2R reactions. Based on Cu and bimetallic Cu-based materials (Bi2CuO4 and In2Cu2O5) systems, we found that by introducing Bi and In metal adsorption sites, the O atoms of adsorbed H2O can directly involve in the formation of HCOO through a water-assisted mechanism (∗COOH regeneration), thereby improving the selectivity of liquid HCOO product mostly from 34.2% to 98%. This strategy gives valuable insights into the design of HCOO-favored catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Electrolyte design for high hydrogen peroxide production rates utilizing commercial carbon gas diffusion electrodes Excited-state protonation and reduction enables the umpolung Birch reduction of naphthalenes Drinking water purification using metal-organic frameworks: Removal of disinfection by-products Antigen spatial-matching polyaptamer nanostructure to block coronavirus infection and alleviate inflammation Engineering biotic-abiotic hybrid systems for solar-to-chemical conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1