扭曲石墨烯 Moiré 超晶格中取决于层的机电响应。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-06-27 DOI:10.1021/acsnano.4c01794
Hanhao Zhang, Yuanhao Wei, Yuhao Li*, Shengsheng Lin, Jiarui Wang, Takashi Taniguchi, Kenji Watanabe, Jiangyu Li, Yi Shi, Xinran Wang, Yan Shi* and Zaiyao Fei*, 
{"title":"扭曲石墨烯 Moiré 超晶格中取决于层的机电响应。","authors":"Hanhao Zhang,&nbsp;Yuanhao Wei,&nbsp;Yuhao Li*,&nbsp;Shengsheng Lin,&nbsp;Jiarui Wang,&nbsp;Takashi Taniguchi,&nbsp;Kenji Watanabe,&nbsp;Jiangyu Li,&nbsp;Yi Shi,&nbsp;Xinran Wang,&nbsp;Yan Shi* and Zaiyao Fei*,&nbsp;","doi":"10.1021/acsnano.4c01794","DOIUrl":null,"url":null,"abstract":"<p >The coupling of mechanical deformation and electrical stimuli at the nanoscale has been the subject of intense investigation in the realm of materials science. Recently, twisted van der Waals (vdW) materials have emerged as a platform for exploring exotic quantum states. These states are intimately tied to the formation of moiré superlattices, which can be visualized by directly exploiting the electromechanical response. However, the origin of the response, even in twisted bilayer graphene (tBLG), remains unsettled. Here, employing lateral piezoresponse force microscopy (LPFM), we investigate the electromechanical responses of marginally twisted graphene moiré superlattices with different layer thicknesses. We observe distinct LPFM amplitudes and spatial profiles in tBLG and twisted monolayer–bilayer graphene (tMBG), exhibiting effective in-plane piezoelectric coefficients of 0.05 and 0.35 pm/V, respectively. Force tuning experiments further underscored a marked divergence in their responses. The contrasting behaviors suggest different electromechanical couplings in tBLG and tMBG. In tBLG, the response near the domain walls is attributed to the flexoelectric effect, while in tMBG, the behaviors can be comprehended within the context of the piezoelectric effect. Our results not only provide insights into electromechanical and corporative effects in twisted vdW materials with different stacking symmetries but may also offer a way to engineer them at the nanoscale.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-Dependent Electromechanical Response in Twisted Graphene Moiré Superlattices\",\"authors\":\"Hanhao Zhang,&nbsp;Yuanhao Wei,&nbsp;Yuhao Li*,&nbsp;Shengsheng Lin,&nbsp;Jiarui Wang,&nbsp;Takashi Taniguchi,&nbsp;Kenji Watanabe,&nbsp;Jiangyu Li,&nbsp;Yi Shi,&nbsp;Xinran Wang,&nbsp;Yan Shi* and Zaiyao Fei*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c01794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The coupling of mechanical deformation and electrical stimuli at the nanoscale has been the subject of intense investigation in the realm of materials science. Recently, twisted van der Waals (vdW) materials have emerged as a platform for exploring exotic quantum states. These states are intimately tied to the formation of moiré superlattices, which can be visualized by directly exploiting the electromechanical response. However, the origin of the response, even in twisted bilayer graphene (tBLG), remains unsettled. Here, employing lateral piezoresponse force microscopy (LPFM), we investigate the electromechanical responses of marginally twisted graphene moiré superlattices with different layer thicknesses. We observe distinct LPFM amplitudes and spatial profiles in tBLG and twisted monolayer–bilayer graphene (tMBG), exhibiting effective in-plane piezoelectric coefficients of 0.05 and 0.35 pm/V, respectively. Force tuning experiments further underscored a marked divergence in their responses. The contrasting behaviors suggest different electromechanical couplings in tBLG and tMBG. In tBLG, the response near the domain walls is attributed to the flexoelectric effect, while in tMBG, the behaviors can be comprehended within the context of the piezoelectric effect. Our results not only provide insights into electromechanical and corporative effects in twisted vdW materials with different stacking symmetries but may also offer a way to engineer them at the nanoscale.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c01794\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c01794","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米尺度的机械变形和电刺激耦合一直是材料科学领域深入研究的课题。最近,扭曲范德华(vdW)材料成为探索奇异量子态的平台。这些状态与摩尔纹超晶格的形成密切相关,可以通过直接利用机电响应将其可视化。然而,即使在扭曲双层石墨烯(tBLG)中,这种响应的起源仍未确定。在此,我们采用横向压电响应力显微镜(LPFM)研究了不同层厚的微扭曲石墨烯摩尔超晶格的机电响应。我们在 tBLG 和扭曲单层-双层石墨烯 (tMBG) 中观察到了不同的 LPFM 振幅和空间轮廓,其平面内有效压电系数分别为 0.05 和 0.35 pm/V。力调谐实验进一步凸显了它们在响应上的明显差异。对比行为表明 tBLG 和 tMBG 具有不同的机电耦合。在 tBLG 中,畴壁附近的响应归因于挠电效应,而在 tMBG 中,这些行为可以在压电效应的背景下理解。我们的研究结果不仅让人们深入了解了具有不同堆积对称性的扭曲 vdW 材料的机电效应和体电效应,还为在纳米尺度上设计这些材料提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layer-Dependent Electromechanical Response in Twisted Graphene Moiré Superlattices

The coupling of mechanical deformation and electrical stimuli at the nanoscale has been the subject of intense investigation in the realm of materials science. Recently, twisted van der Waals (vdW) materials have emerged as a platform for exploring exotic quantum states. These states are intimately tied to the formation of moiré superlattices, which can be visualized by directly exploiting the electromechanical response. However, the origin of the response, even in twisted bilayer graphene (tBLG), remains unsettled. Here, employing lateral piezoresponse force microscopy (LPFM), we investigate the electromechanical responses of marginally twisted graphene moiré superlattices with different layer thicknesses. We observe distinct LPFM amplitudes and spatial profiles in tBLG and twisted monolayer–bilayer graphene (tMBG), exhibiting effective in-plane piezoelectric coefficients of 0.05 and 0.35 pm/V, respectively. Force tuning experiments further underscored a marked divergence in their responses. The contrasting behaviors suggest different electromechanical couplings in tBLG and tMBG. In tBLG, the response near the domain walls is attributed to the flexoelectric effect, while in tMBG, the behaviors can be comprehended within the context of the piezoelectric effect. Our results not only provide insights into electromechanical and corporative effects in twisted vdW materials with different stacking symmetries but may also offer a way to engineer them at the nanoscale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
23.81%-Efficiency Flexible Inverted Perovskite Solar Cells with Enhanced Stability and Flexibility via a Lewis Base Passivation. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. Transforming Albumin into a Trojan Horse of Immunotherapy-Resistant Colorectal Cancer with a High Microsatellite Instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1