具有增强卤过氧化物酶活性的缺陷工程 Bi2Te3 纳米片用于海洋防污。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-06-27 DOI:10.1002/smll.202401929
Sagar Sunil Kulkarni, Dang Khoa Tong, Chien-Ting Wu, Cheng-Yen Kao, Surojit Chattopadhyay
{"title":"具有增强卤过氧化物酶活性的缺陷工程 Bi2Te3 纳米片用于海洋防污。","authors":"Sagar Sunil Kulkarni,&nbsp;Dang Khoa Tong,&nbsp;Chien-Ting Wu,&nbsp;Cheng-Yen Kao,&nbsp;Surojit Chattopadhyay","doi":"10.1002/smll.202401929","DOIUrl":null,"url":null,"abstract":"<p>Defective bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H<sub>2</sub>O<sub>2</sub>. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi<sub>2</sub>Te<sub>3</sub> nanosheets creates controlled defects (d), such as Bi<sup>3+</sup>species, in d-Bi<sub>2</sub>Te<sub>3</sub>-X that induces enhanced hPOD activity. d-Bi<sub>2</sub>Te<sub>3</sub>-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi<sub>2</sub>Te<sub>3</sub> nanosheets. The antibacterial activity of d-Bi<sub>2</sub>Te<sub>3</sub>-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi<sub>2</sub>Te<sub>3</sub>-250 nanozyme has been studied on <i>Pseudomonas aeruginosa</i> biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 43","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202401929","citationCount":"0","resultStr":"{\"title\":\"Defect Engineered Bi2Te3 Nanosheets with Enhanced Haloperoxidase Activity for Marine Antibiofouling\",\"authors\":\"Sagar Sunil Kulkarni,&nbsp;Dang Khoa Tong,&nbsp;Chien-Ting Wu,&nbsp;Cheng-Yen Kao,&nbsp;Surojit Chattopadhyay\",\"doi\":\"10.1002/smll.202401929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Defective bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H<sub>2</sub>O<sub>2</sub>. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi<sub>2</sub>Te<sub>3</sub> nanosheets creates controlled defects (d), such as Bi<sup>3+</sup>species, in d-Bi<sub>2</sub>Te<sub>3</sub>-X that induces enhanced hPOD activity. d-Bi<sub>2</sub>Te<sub>3</sub>-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi<sub>2</sub>Te<sub>3</sub> nanosheets. The antibacterial activity of d-Bi<sub>2</sub>Te<sub>3</sub>-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi<sub>2</sub>Te<sub>3</sub>-250 nanozyme has been studied on <i>Pseudomonas aeruginosa</i> biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 43\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202401929\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202401929\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202401929","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缺陷碲化铋(Bi2Te3)纳米片是一种模仿卤过氧化物酶活性(hPOD)的人工纳米酶,通过提高卤化物和 H2O2 产生的具有细胞毒性的次卤酸,有望成为环保、杀菌和防污材料。显微镜和光谱特性分析表明,控制 NaOH(最多 X = 250 µL)蚀刻几乎无活性的非过渡金属瑀 Bi2Te3 纳米片会在 d-Bi2Te3-X 中产生受控缺陷(d),如 Bi3+种,从而诱导增强 hPOD 活性。通过细菌存活率研究 d-Bi2Te3-250 纳米酶的抗菌活性,结果显示其对海洋环境中普遍存在的金黄色葡萄球菌和铜绿假单胞菌的存活率分别为 1% 和 45%。使用清除剂证实了 hPOD 的机制,HOBr 和单线态氧是产生这种效应的原因。d-Bi2Te3-250 纳米酶的防污特性已在实验室环境中通过多种检测方法对铜绿假单胞菌生物膜进行了研究,并在实际环境中对涂有纳米酶混合商业涂料的钛板(Ti)进行了研究。包括直接显微镜证据在内的所有研究都表明,在纳米酶存在的情况下,微污垢的抑制率高达≈73%。这种方法表明,缺陷工程可以诱导非过渡金属瑀的抗菌和防污活性,为贵金属提供了一种廉价的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defect Engineered Bi2Te3 Nanosheets with Enhanced Haloperoxidase Activity for Marine Antibiofouling

Defective bismuth telluride (Bi2Te3) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H2O2. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi2Te3 nanosheets creates controlled defects (d), such as Bi3+species, in d-Bi2Te3-X that induces enhanced hPOD activity. d-Bi2Te3-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi2Te3 nanosheets. The antibacterial activity of d-Bi2Te3-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi2Te3-250 nanozyme has been studied on Pseudomonas aeruginosa biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Reversible Sliding Motion by Hole-Injection in Ammonium-Linked Ferrocene, Electronically Decoupled from Noble Metal Substrate by Crown-Ether Template Layer Resurrecting p53 by an Artificial Nano-Protein for Potent Photodynamic Retinoblastoma Therapy Drastically Promoting Rate Capability via Dual-Cations Intercalation of V2O5 Enabling Rapid Zinc-Ion Storage Recent Advances in Metal Halide Perovskites for CO2 Photocatalytic Reduction: An Overview and Future Prospects Optomagnetic Micromirror Arrays for Mapping Large Area Stiffness Distributions of Biomimetic Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1