多态基因簇开关决定乳腺癌线粒体和代谢的适应性格局

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2024-09-04 DOI:10.1158/0008-5472.CAN-23-3172
Michela Menegollo, Robert B Bentham, Tiago Henriques, Seow Q Ng, Ziyu Ren, Clarinde Esculier, Sia Agarwal, Emily T Y Tong, Clement Lo, Sanjana Ilangovan, Zorka Szabadkai, Matteo Suman, Neill Patani, Avinash Ghanate, Kevin Bryson, Robert C Stein, Mariia Yuneva, Gyorgy Szabadkai
{"title":"多态基因簇开关决定乳腺癌线粒体和代谢的适应性格局","authors":"Michela Menegollo, Robert B Bentham, Tiago Henriques, Seow Q Ng, Ziyu Ren, Clarinde Esculier, Sia Agarwal, Emily T Y Tong, Clement Lo, Sanjana Ilangovan, Zorka Szabadkai, Matteo Suman, Neill Patani, Avinash Ghanate, Kevin Bryson, Robert C Stein, Mariia Yuneva, Gyorgy Szabadkai","doi":"10.1158/0008-5472.CAN-23-3172","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive metabolic switches are proposed to underlie conversions between cellular states during normal development as well as in cancer evolution. Metabolic adaptations represent important therapeutic targets in tumors, highlighting the need to characterize the full spectrum, characteristics, and regulation of the metabolic switches. To investigate the hypothesis that metabolic switches associated with specific metabolic states can be recognized by locating large alternating gene expression patterns, we developed a method to identify interspersed gene sets by massive correlated biclustering and to predict their metabolic wiring. Testing the method on breast cancer transcriptome datasets revealed a series of gene sets with switch-like behavior that could be used to predict mitochondrial content, metabolic activity, and central carbon flux in tumors. The predictions were experimentally validated by bioenergetic profiling and metabolic flux analysis of 13C-labeled substrates. The metabolic switch positions also distinguished between cellular states, correlating with tumor pathology, prognosis, and chemosensitivity. The method is applicable to any large and heterogeneous transcriptome dataset to discover metabolic and associated pathophysiological states. Significance: A method for identifying the transcriptomic signatures of metabolic switches underlying divergent routes of cellular transformation stratifies breast cancer into metabolic subtypes, predicting their biology, architecture, and clinical outcome.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multistate Gene Cluster Switches Determine the Adaptive Mitochondrial and Metabolic Landscape of Breast Cancer.\",\"authors\":\"Michela Menegollo, Robert B Bentham, Tiago Henriques, Seow Q Ng, Ziyu Ren, Clarinde Esculier, Sia Agarwal, Emily T Y Tong, Clement Lo, Sanjana Ilangovan, Zorka Szabadkai, Matteo Suman, Neill Patani, Avinash Ghanate, Kevin Bryson, Robert C Stein, Mariia Yuneva, Gyorgy Szabadkai\",\"doi\":\"10.1158/0008-5472.CAN-23-3172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adaptive metabolic switches are proposed to underlie conversions between cellular states during normal development as well as in cancer evolution. Metabolic adaptations represent important therapeutic targets in tumors, highlighting the need to characterize the full spectrum, characteristics, and regulation of the metabolic switches. To investigate the hypothesis that metabolic switches associated with specific metabolic states can be recognized by locating large alternating gene expression patterns, we developed a method to identify interspersed gene sets by massive correlated biclustering and to predict their metabolic wiring. Testing the method on breast cancer transcriptome datasets revealed a series of gene sets with switch-like behavior that could be used to predict mitochondrial content, metabolic activity, and central carbon flux in tumors. The predictions were experimentally validated by bioenergetic profiling and metabolic flux analysis of 13C-labeled substrates. The metabolic switch positions also distinguished between cellular states, correlating with tumor pathology, prognosis, and chemosensitivity. The method is applicable to any large and heterogeneous transcriptome dataset to discover metabolic and associated pathophysiological states. Significance: A method for identifying the transcriptomic signatures of metabolic switches underlying divergent routes of cellular transformation stratifies breast cancer into metabolic subtypes, predicting their biology, architecture, and clinical outcome.</p>\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.CAN-23-3172\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-23-3172","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

适应性代谢开关被认为是正常发育和癌症进化过程中细胞状态转换的基础。代谢适应性是肿瘤的重要治疗靶点,这凸显了研究代谢开关的全部特征、特性和调控的必要性。为了研究与特定代谢状态相关的代谢开关可以通过定位大型交替基因表达模式来识别这一假设,我们开发了一种方法,通过大规模相关双聚类(MCbiclust)来识别穿插基因集,并预测其代谢线路。在乳腺癌转录组数据集上测试该方法发现了一系列具有开关样行为的基因集,可用于预测肿瘤中的线粒体含量、代谢活性和中心碳通量。这些预测通过生物能谱分析和 13C 标记底物的代谢通量分析得到了实验验证。代谢开关位置还能区分细胞状态,并与肿瘤病理、预后和化疗敏感性相关联。该方法适用于任何大型异质转录组数据集,以发现代谢和相关病理生理状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistate Gene Cluster Switches Determine the Adaptive Mitochondrial and Metabolic Landscape of Breast Cancer.

Adaptive metabolic switches are proposed to underlie conversions between cellular states during normal development as well as in cancer evolution. Metabolic adaptations represent important therapeutic targets in tumors, highlighting the need to characterize the full spectrum, characteristics, and regulation of the metabolic switches. To investigate the hypothesis that metabolic switches associated with specific metabolic states can be recognized by locating large alternating gene expression patterns, we developed a method to identify interspersed gene sets by massive correlated biclustering and to predict their metabolic wiring. Testing the method on breast cancer transcriptome datasets revealed a series of gene sets with switch-like behavior that could be used to predict mitochondrial content, metabolic activity, and central carbon flux in tumors. The predictions were experimentally validated by bioenergetic profiling and metabolic flux analysis of 13C-labeled substrates. The metabolic switch positions also distinguished between cellular states, correlating with tumor pathology, prognosis, and chemosensitivity. The method is applicable to any large and heterogeneous transcriptome dataset to discover metabolic and associated pathophysiological states. Significance: A method for identifying the transcriptomic signatures of metabolic switches underlying divergent routes of cellular transformation stratifies breast cancer into metabolic subtypes, predicting their biology, architecture, and clinical outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
A Paradigm Shift in Tumor Immunology: Th17 Cells and TGF-β in Intestinal Cancer Initiation Inhibition of JNK Signaling Overcomes Cancer-Associated Fibroblast-Mediated Immunosuppression and Enhances the Efficacy of Immunotherapy in Bladder Cancer CircRREB1 Mediates Metabolic Reprogramming and Stemness Maintenance to Facilitate Pancreatic Ductal Adenocarcinoma Progression Combined Autophagy Inhibition and Dendritic Cell Recruitment Induces Antitumor Immunity and Enhances Immune Checkpoint Blockade Sensitivity in Pancreatic Cancer Precise In Situ Delivery of a Photo-enhanceable Inflammasome-Activating Nanovaccine Activates Anti-cancer Immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1