Giovana R. Oliveira , Matheus Gallas-Lopes , Rafael Chitolina , Leonardo M. Bastos , Stefani M. Portela , Thailana Stahlhofer-Buss , Darlan Gusso , Rosane Gomez , Angela T.S. Wyse , Ana P. Herrmann , Angelo Piato
{"title":"评估克百威诱导斑马鱼(Danio rerio)发生的行为和神经化学变化。","authors":"Giovana R. Oliveira , Matheus Gallas-Lopes , Rafael Chitolina , Leonardo M. Bastos , Stefani M. Portela , Thailana Stahlhofer-Buss , Darlan Gusso , Rosane Gomez , Angela T.S. Wyse , Ana P. Herrmann , Angelo Piato","doi":"10.1016/j.cbpc.2024.109969","DOIUrl":null,"url":null,"abstract":"<div><p>Carbofuran (CF) is a carbamate class pesticide, widely used in agriculture for pest control in crops. This pesticide has high toxicity in non-target organisms, and its presence in the environment poses a threat to the ecosystem. Research has revealed that this pesticide acts as an inhibitor of acetylcholinesterase (AChE), inducing an accumulation of acetylcholine in the brain. Nonetheless, our understanding of CF impact on the central nervous system remains elusive. Therefore, this study explored how CF influences behavioral and neurochemical outcomes in adult zebrafish. The animals underwent a 96-hour exposure protocol to different concentrations of CF (5, 50, and 500 μg/L) and were subjected to the novel tank (NTT) and social preference tests (SPT). Subsequently, they were euthanized, and their brains were extracted to evaluate neurochemical markers associated with oxidative stress and AChE levels. In the NTT and SPT, CF did not alter the evaluated behavioral parameters. Furthermore, CF did not affect the levels of AChE, non-protein sulfhydryl groups, and thiobarbituric acid reactive species in the zebrafish brain. Nevertheless, further investigation is required to explore the effects of environmental exposure to this compound on non-target organisms.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"283 ","pages":"Article 109969"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of behavioral and neurochemical changes induced by carbofuran in zebrafish (Danio rerio)\",\"authors\":\"Giovana R. Oliveira , Matheus Gallas-Lopes , Rafael Chitolina , Leonardo M. Bastos , Stefani M. Portela , Thailana Stahlhofer-Buss , Darlan Gusso , Rosane Gomez , Angela T.S. Wyse , Ana P. Herrmann , Angelo Piato\",\"doi\":\"10.1016/j.cbpc.2024.109969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbofuran (CF) is a carbamate class pesticide, widely used in agriculture for pest control in crops. This pesticide has high toxicity in non-target organisms, and its presence in the environment poses a threat to the ecosystem. Research has revealed that this pesticide acts as an inhibitor of acetylcholinesterase (AChE), inducing an accumulation of acetylcholine in the brain. Nonetheless, our understanding of CF impact on the central nervous system remains elusive. Therefore, this study explored how CF influences behavioral and neurochemical outcomes in adult zebrafish. The animals underwent a 96-hour exposure protocol to different concentrations of CF (5, 50, and 500 μg/L) and were subjected to the novel tank (NTT) and social preference tests (SPT). Subsequently, they were euthanized, and their brains were extracted to evaluate neurochemical markers associated with oxidative stress and AChE levels. In the NTT and SPT, CF did not alter the evaluated behavioral parameters. Furthermore, CF did not affect the levels of AChE, non-protein sulfhydryl groups, and thiobarbituric acid reactive species in the zebrafish brain. Nevertheless, further investigation is required to explore the effects of environmental exposure to this compound on non-target organisms.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"283 \",\"pages\":\"Article 109969\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624001376\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001376","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of behavioral and neurochemical changes induced by carbofuran in zebrafish (Danio rerio)
Carbofuran (CF) is a carbamate class pesticide, widely used in agriculture for pest control in crops. This pesticide has high toxicity in non-target organisms, and its presence in the environment poses a threat to the ecosystem. Research has revealed that this pesticide acts as an inhibitor of acetylcholinesterase (AChE), inducing an accumulation of acetylcholine in the brain. Nonetheless, our understanding of CF impact on the central nervous system remains elusive. Therefore, this study explored how CF influences behavioral and neurochemical outcomes in adult zebrafish. The animals underwent a 96-hour exposure protocol to different concentrations of CF (5, 50, and 500 μg/L) and were subjected to the novel tank (NTT) and social preference tests (SPT). Subsequently, they were euthanized, and their brains were extracted to evaluate neurochemical markers associated with oxidative stress and AChE levels. In the NTT and SPT, CF did not alter the evaluated behavioral parameters. Furthermore, CF did not affect the levels of AChE, non-protein sulfhydryl groups, and thiobarbituric acid reactive species in the zebrafish brain. Nevertheless, further investigation is required to explore the effects of environmental exposure to this compound on non-target organisms.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.