构建柯蒂器官模型,研究硫酸小檗碱对受损听觉细胞的影响。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-06-24 DOI:10.1002/jbm.b.35439
Junming Zhang, Li Liu, Rong Shen, Xiangxin Lou
{"title":"构建柯蒂器官模型,研究硫酸小檗碱对受损听觉细胞的影响。","authors":"Junming Zhang,&nbsp;Li Liu,&nbsp;Rong Shen,&nbsp;Xiangxin Lou","doi":"10.1002/jbm.b.35439","DOIUrl":null,"url":null,"abstract":"<p>Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of organ of Corti organoid to study the effects of berberine sulfate on damaged auditory cells\",\"authors\":\"Junming Zhang,&nbsp;Li Liu,&nbsp;Rong Shen,&nbsp;Xiangxin Lou\",\"doi\":\"10.1002/jbm.b.35439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35439\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35439","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

感音神经性听力损失(SNHL)主要是由内耳毛细胞(HC)和相关螺旋神经节神经元(SGN)的损伤或缺失引起的。目前,临床上仍没有有效治疗 SNHL 的方法。最近,类器官的发展为 SNHL 的研究和治疗带来了广阔的前景。同时,三维(3D)打印技术为组织工程和再生医学提供了构建多功能类器官的巨大机会。在这项研究中,明胶(Gel)、海藻酸钠(SA)和聚乙烯醇(PVA)被用来通过三维打印制造仿生物支架。将取自新生小鼠内耳的Corti器官播种到PVA/Gel/SA支架上,构建Corti器官模型。然后,利用Corti器官模型研究硫酸小檗碱对新霉素疹听觉HC和SGN的潜在保护作用。结果表明,PVA/凝胶/SA仿生三维支架具有良好的细胞相容性和机械性能。构建的类器官在体外能很好地维持 Corti 器官的活性。此外,损伤干预结果表明,硫酸小檗碱能显著抑制新霉素诱导的 HC 和 SGN 损伤。这项研究表明,所构建的类器官与Corti器官具有高度的生物仿真性,可为SNHL的药物开发、细胞和基因治疗提供有效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of organ of Corti organoid to study the effects of berberine sulfate on damaged auditory cells

Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1