如何克服微孢子虫基因组特征带来的限制以确保基因预测?

IF 2.1 4区 生物学 Q3 MICROBIOLOGY Journal of Eukaryotic Microbiology Pub Date : 2024-06-27 DOI:10.1111/jeu.13038
Eric Peyretaillade, Reginal F. Akossi, Jérémy Tournayre, Frédéric Delbac, Ivan Wawrzyniak
{"title":"如何克服微孢子虫基因组特征带来的限制以确保基因预测?","authors":"Eric Peyretaillade,&nbsp;Reginal F. Akossi,&nbsp;Jérémy Tournayre,&nbsp;Frédéric Delbac,&nbsp;Ivan Wawrzyniak","doi":"10.1111/jeu.13038","DOIUrl":null,"url":null,"abstract":"<p>Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to overcome constraints imposed by microsporidian genome features to ensure gene prediction?\",\"authors\":\"Eric Peyretaillade,&nbsp;Reginal F. Akossi,&nbsp;Jérémy Tournayre,&nbsp;Frédéric Delbac,&nbsp;Ivan Wawrzyniak\",\"doi\":\"10.1111/jeu.13038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.</p>\",\"PeriodicalId\":15672,\"journal\":{\"name\":\"Journal of Eukaryotic Microbiology\",\"volume\":\"71 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Eukaryotic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jeu.13038\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.13038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自测序技术问世以来,由于其不断发展,获取任何生物体的完整基因组序列变得越来越容易,成本也越来越低。然而,要阐明生物体发育的所有生物过程,高质量的注释是必不可少的。在基因组注释中,预测基因结构是计算生物学最重要、最吸引人的挑战之一。这方面的注释需要不断优化,尤其是像微孢子虫这样不寻常的基因组。事实上,这组与真菌有关的寄生虫表现出与它们作为细胞内寄生虫的进化有关的特殊特征(基因大小高度缩小、序列进化速度快),需要采用特殊的注释方法来考虑所有这些特征。本综述旨在概述这些特点,并评估在灵敏度和特异性方面提高微孢子虫基因预测准确性的日益高效的方法和工具。随后,最后一部分将专门讨论旨在加强预测软件生成的注释数据的后基因组学方法。这些方法包括鉴定其他未被充分研究的基因,如编码调节性非编码 RNA 或非常小的蛋白质的基因,这些基因在这些微生物的生命周期中也起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to overcome constraints imposed by microsporidian genome features to ensure gene prediction?

Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.
期刊最新文献
Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth. Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis. Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite. Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists. Functional stress responses in Glaucophyta: Evidence of ethylene and abscisic acid functions in Cyanophora paradoxa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1