在单细胞全息研究中利用基础模型的深度学习能力。

IF 81.3 1区 生物学 Q1 CELL BIOLOGY Nature Reviews Molecular Cell Biology Pub Date : 2024-06-26 DOI:10.1038/s41580-024-00756-6
Qin Ma, Yi Jiang, Hao Cheng, Dong Xu
{"title":"在单细胞全息研究中利用基础模型的深度学习能力。","authors":"Qin Ma, Yi Jiang, Hao Cheng, Dong Xu","doi":"10.1038/s41580-024-00756-6","DOIUrl":null,"url":null,"abstract":"Foundation models hold great promise for analyzing single-cell omics data, yet various challenges remain that require further advancements. In this Comment, we discuss the progress, limitations and best practices in applying foundation models to interrogate data and improve downstream tasks in single-cell omics. This Comment discusses the progress, limitations and best practices in applying foundation models to single-cell omics data.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":81.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the deep learning power of foundation models in single-cell omics\",\"authors\":\"Qin Ma, Yi Jiang, Hao Cheng, Dong Xu\",\"doi\":\"10.1038/s41580-024-00756-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foundation models hold great promise for analyzing single-cell omics data, yet various challenges remain that require further advancements. In this Comment, we discuss the progress, limitations and best practices in applying foundation models to interrogate data and improve downstream tasks in single-cell omics. This Comment discusses the progress, limitations and best practices in applying foundation models to single-cell omics data.\",\"PeriodicalId\":19051,\"journal\":{\"name\":\"Nature Reviews Molecular Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":81.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41580-024-00756-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41580-024-00756-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基础模型在分析单细胞组学数据方面大有可为,但仍存在各种挑战,需要进一步改进。在本评论中,我们将讨论应用基础模型查询数据和改进单细胞组学下游任务的进展、局限性和最佳实践。本评论讨论了将基础模型应用于单细胞组学数据的进展、局限性和最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing the deep learning power of foundation models in single-cell omics
Foundation models hold great promise for analyzing single-cell omics data, yet various challenges remain that require further advancements. In this Comment, we discuss the progress, limitations and best practices in applying foundation models to interrogate data and improve downstream tasks in single-cell omics. This Comment discusses the progress, limitations and best practices in applying foundation models to single-cell omics data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Molecular Cell Biology
Nature Reviews Molecular Cell Biology 生物-细胞生物学
CiteScore
173.60
自引率
0.50%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.
期刊最新文献
Homeostasis control in health and disease by the unfolded protein response Epigenetic discovery by enzyme activity profiling When senescence generates pluripotent stem cells The double-edged sword of eliminating senescent cells The prompt to discover senolytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1