纳米塑料引发猪肾细胞老化和炎症

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2024-06-24 DOI:10.1016/j.tox.2024.153870
Guanglin Lu, Shuqin Wei
{"title":"纳米塑料引发猪肾细胞老化和炎症","authors":"Guanglin Lu,&nbsp;Shuqin Wei","doi":"10.1016/j.tox.2024.153870","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoplastics have now become a pervasive contaminant, being detected in various environmental media. However, our understanding of the specific toxicological effects of nanoplastics (NPs) on the kidneys remains unclear, which is a scientific problem that needs to be solved. To address this question, we employed two kidney cell lines as in vitro models to study the toxicological effects of NPs on porcine kidney cells. Firstly, we observed that NPs can be internalized into the cytoplasm in a time- and dose-dependent manner by using a laser confocal microscope. We further discovered that NPs can trigger inflammatory responses and lead to porcine kidney cell senescence by detection of senescence marker molecules. Furthermore, the potential molecular mechanism(s) by which NPs induce porcine kidney cell senescence were explored, we found that NPs induce oxidative stress in the porcine kidney cells, leading to the accumulation of reactive oxygen species (ROS) within mitochondria, ultimately triggering inflammatory responses and senescence in the kidney cells. In summary, our experimental results not only provide new evidence for the toxicity of NPs but also offer new ideas and directions for future research. This discovery will aid in our deeper understanding of the potential health impacts of NPs on domestic pigs.</p></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoplastics trigger the aging and inflammation of porcine kidney cells\",\"authors\":\"Guanglin Lu,&nbsp;Shuqin Wei\",\"doi\":\"10.1016/j.tox.2024.153870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoplastics have now become a pervasive contaminant, being detected in various environmental media. However, our understanding of the specific toxicological effects of nanoplastics (NPs) on the kidneys remains unclear, which is a scientific problem that needs to be solved. To address this question, we employed two kidney cell lines as in vitro models to study the toxicological effects of NPs on porcine kidney cells. Firstly, we observed that NPs can be internalized into the cytoplasm in a time- and dose-dependent manner by using a laser confocal microscope. We further discovered that NPs can trigger inflammatory responses and lead to porcine kidney cell senescence by detection of senescence marker molecules. Furthermore, the potential molecular mechanism(s) by which NPs induce porcine kidney cell senescence were explored, we found that NPs induce oxidative stress in the porcine kidney cells, leading to the accumulation of reactive oxygen species (ROS) within mitochondria, ultimately triggering inflammatory responses and senescence in the kidney cells. In summary, our experimental results not only provide new evidence for the toxicity of NPs but also offer new ideas and directions for future research. This discovery will aid in our deeper understanding of the potential health impacts of NPs on domestic pigs.</p></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X24001513\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24001513","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

纳米塑料现已成为一种普遍存在的污染物,在各种环境介质中都能检测到。然而,我们对纳米塑料(NPs)对肾脏的具体毒理效应仍不清楚,这是一个亟待解决的科学问题。针对这一问题,我们采用两种肾细胞系作为体外模型,研究了 NPs 对猪肾细胞的毒理效应。首先,我们利用激光共聚焦显微镜观察到,NPs 能以时间和剂量依赖的方式内化到细胞质中。通过检测衰老标记分子,我们进一步发现 NPs 可引发炎症反应并导致猪肾细胞衰老。此外,我们还探索了 NPs 诱导猪肾细胞衰老的潜在分子机制,发现 NPs 可诱导猪肾细胞氧化应激,导致线粒体内活性氧(ROS)的积累,最终引发炎症反应和肾细胞衰老。总之,我们的实验结果不仅为纳米粒子的毒性提供了新的证据,也为未来的研究提供了新的思路和方向。这一发现将有助于我们更深入地了解 NPs 对家猪健康的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoplastics trigger the aging and inflammation of porcine kidney cells

Nanoplastics have now become a pervasive contaminant, being detected in various environmental media. However, our understanding of the specific toxicological effects of nanoplastics (NPs) on the kidneys remains unclear, which is a scientific problem that needs to be solved. To address this question, we employed two kidney cell lines as in vitro models to study the toxicological effects of NPs on porcine kidney cells. Firstly, we observed that NPs can be internalized into the cytoplasm in a time- and dose-dependent manner by using a laser confocal microscope. We further discovered that NPs can trigger inflammatory responses and lead to porcine kidney cell senescence by detection of senescence marker molecules. Furthermore, the potential molecular mechanism(s) by which NPs induce porcine kidney cell senescence were explored, we found that NPs induce oxidative stress in the porcine kidney cells, leading to the accumulation of reactive oxygen species (ROS) within mitochondria, ultimately triggering inflammatory responses and senescence in the kidney cells. In summary, our experimental results not only provide new evidence for the toxicity of NPs but also offer new ideas and directions for future research. This discovery will aid in our deeper understanding of the potential health impacts of NPs on domestic pigs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Cadmium-induced lung injury disrupts immune cell homeostasis in the secondary lymphoid organs in mice Heavy metal contamination of the Nigerian environment from e-waste management: A systematic review of exposure pathway and attendant pathophysiological implications New insights into the toxicity of lanthanides with functional genomics Effects of 28-day nose-only inhalation of PCB52 (2,2′,5,5′-Tetrachlorobiphenyl) on the brain transcriptome Edible vegetables grown in the vicinity of electronic wastes: A study of potential health risks and DNA damage in consumers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1