Sangharatna M. Ramteke , Magdalena Walczak , Marco De Stefano , Alessandro Ruggiero , Andreas Rosenkranz , Max Marian
{"title":"用于三重腐蚀和氧化保护的二维材料:综述。","authors":"Sangharatna M. Ramteke , Magdalena Walczak , Marco De Stefano , Alessandro Ruggiero , Andreas Rosenkranz , Max Marian","doi":"10.1016/j.cis.2024.103243","DOIUrl":null,"url":null,"abstract":"<div><p>The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103243"},"PeriodicalIF":15.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624001660/pdfft?md5=e68644785af59ffac300852f6aaa3fdc&pid=1-s2.0-S0001868624001660-main.pdf","citationCount":"0","resultStr":"{\"title\":\"2D materials for Tribo-corrosion and -oxidation protection: A review\",\"authors\":\"Sangharatna M. Ramteke , Magdalena Walczak , Marco De Stefano , Alessandro Ruggiero , Andreas Rosenkranz , Max Marian\",\"doi\":\"10.1016/j.cis.2024.103243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.</p></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"331 \",\"pages\":\"Article 103243\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001868624001660/pdfft?md5=e68644785af59ffac300852f6aaa3fdc&pid=1-s2.0-S0001868624001660-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624001660\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
2D materials for Tribo-corrosion and -oxidation protection: A review
The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.