从有限的区域测井数据模拟三维井屏位置的推算方法。

Ground water Pub Date : 2024-06-27 DOI:10.1111/gwat.13424
Georgios Kourakos, Rich Pauloo, Thomas Harter
{"title":"从有限的区域测井数据模拟三维井屏位置的推算方法。","authors":"Georgios Kourakos, Rich Pauloo, Thomas Harter","doi":"10.1111/gwat.13424","DOIUrl":null,"url":null,"abstract":"<p><p>In groundwater modeling studies, accurate spatial and intensity identification of water sources and sinks is of critical importance. Precise construction data about wells (water sinks) are particularly difficult to obtain. The collection of well log data is expensive and laborious, and government records of historic well log data are often imprecise and incomplete with respect to the precise location or pumping rate. In many groundwater modeling studies, such as groundwater quality assessments, a precise representation of the horizontal and vertical distribution of well screens is required to accurately estimate contaminant breakthrough curves. The number of wells under consideration may be very large, for example, in the assessment of nonpoint source pollution. In this paper, we propose an imputation framework that allows for proper reconstruction of missing well data. Our approach exploits available information and tolerates data gaps and imprecisions. We demonstrate the value of this method for a subregion of the Central Valley aquifer (California, USA). We show that our framework imputes missing values that preserve statistical properties of available data and that remain consistent with the known spatial distribution of well screens and pumping rates in the three-dimensional aquifer system.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Imputation Method for Simulating 3D Well Screen Locations from Limited Regional Well Log Data.\",\"authors\":\"Georgios Kourakos, Rich Pauloo, Thomas Harter\",\"doi\":\"10.1111/gwat.13424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In groundwater modeling studies, accurate spatial and intensity identification of water sources and sinks is of critical importance. Precise construction data about wells (water sinks) are particularly difficult to obtain. The collection of well log data is expensive and laborious, and government records of historic well log data are often imprecise and incomplete with respect to the precise location or pumping rate. In many groundwater modeling studies, such as groundwater quality assessments, a precise representation of the horizontal and vertical distribution of well screens is required to accurately estimate contaminant breakthrough curves. The number of wells under consideration may be very large, for example, in the assessment of nonpoint source pollution. In this paper, we propose an imputation framework that allows for proper reconstruction of missing well data. Our approach exploits available information and tolerates data gaps and imprecisions. We demonstrate the value of this method for a subregion of the Central Valley aquifer (California, USA). We show that our framework imputes missing values that preserve statistical properties of available data and that remain consistent with the known spatial distribution of well screens and pumping rates in the three-dimensional aquifer system.</p>\",\"PeriodicalId\":94022,\"journal\":{\"name\":\"Ground water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ground water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/gwat.13424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/gwat.13424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在地下水模型研究中,准确确定水源和水汇的空间和强度至关重要。水井(水汇)的精确施工数据尤其难以获得。收集测井数据既费钱又费力,而且政府记录的历史测井数据在精确位置或抽水量方面往往不精确、不完整。在许多地下水建模研究(如地下水质量评估)中,需要精确表示井筛的水平和垂直分布,以准确估算污染物突破曲线。例如,在非点源污染评估中,所考虑的水井数量可能非常多。在本文中,我们提出了一种估算框架,可以对缺失的油井数据进行适当的重建。我们的方法利用了现有信息,并能容忍数据缺失和不精确。我们在中央山谷含水层(美国加利福尼亚州)的一个子区域演示了这种方法的价值。我们的研究表明,我们的框架所估算的缺失值既保留了现有数据的统计特性,又与三维含水层系统中已知的井筛和抽水率的空间分布保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Imputation Method for Simulating 3D Well Screen Locations from Limited Regional Well Log Data.

In groundwater modeling studies, accurate spatial and intensity identification of water sources and sinks is of critical importance. Precise construction data about wells (water sinks) are particularly difficult to obtain. The collection of well log data is expensive and laborious, and government records of historic well log data are often imprecise and incomplete with respect to the precise location or pumping rate. In many groundwater modeling studies, such as groundwater quality assessments, a precise representation of the horizontal and vertical distribution of well screens is required to accurately estimate contaminant breakthrough curves. The number of wells under consideration may be very large, for example, in the assessment of nonpoint source pollution. In this paper, we propose an imputation framework that allows for proper reconstruction of missing well data. Our approach exploits available information and tolerates data gaps and imprecisions. We demonstrate the value of this method for a subregion of the Central Valley aquifer (California, USA). We show that our framework imputes missing values that preserve statistical properties of available data and that remain consistent with the known spatial distribution of well screens and pumping rates in the three-dimensional aquifer system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effective Vertical Anisotropy of Layered Aquifers. Utility of an Instantaneous Salt Dilution Method for Measuring Streamflow in Headwater Streams. Septic Return Flow Pathlines, Endpoints, and Flows Based on the Urban Miami-Dade Groundwater Model. Numerical Modeling of Recovery of Moisture from the Unsaturated Zone: A Feasibility Study. Enhanced Removal of Brine From Porous Structures by Supercritical CO2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1