实现人体尺度的磁粉成像:开发首个基于超导体选择线圈的系统。

Tuan-Anh Le, Minh Phu Bui, Yaser Hadadian, Khaled Mohamed Gadelmowla, Seungjun Oh, Chaemin Im, Seungyong Hahn, Jungwon Yoon
{"title":"实现人体尺度的磁粉成像:开发首个基于超导体选择线圈的系统。","authors":"Tuan-Anh Le, Minh Phu Bui, Yaser Hadadian, Khaled Mohamed Gadelmowla, Seungjun Oh, Chaemin Im, Seungyong Hahn, Jungwon Yoon","doi":"10.1109/TMI.2024.3419427","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Particle Imaging (MPI) is an emerging tomographic modality that allows for precise three-dimensional (3D) mapping of magnetic nanoparticles (MNPs) concentration and distribution. Although significant progress has been made towards improving MPI since its introduction, scaling it up for human applications has proven challenging. High-quality images have been obtained in animal-scale MPI scanners with gradients up to 7 T/m/μ<sub>0</sub>, however, for MPI systems with bore diameters around 200 mm the gradients generated by electromagnets drop significantly to below 0.5 T/m/μ<sub>0</sub>. Given the current technological limitations in image reconstruction and the properties of available MNPs, these low gradients inherently impose limitations on improving MPI resolution for higher precision medical imaging. Utilizing superconductors stands out as a promising approach for developing a human-scale MPI system. In this study, we introduce, for the first time, a human-scale amplitude-modulated (AM) MPI system with superconductor-based selection coils. The system achieves an unprecedented magnetic field gradient of up to 2.5 T/m/μ<sub>0</sub> within a 200 mm bore diameter, enabling large fields of view of 100 × 130 × 98 mm<sup>3</sup> at 2.5 T/m/μ<sub>0</sub> for 3D imaging. While obtained spatial resolution is in the order of previous animal-scale AM MPIs, incorporating superconductors for achieving such high gradients in a 200 mm bore diameter marks a major step toward clinical MPI.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards human-scale magnetic particle imaging: development of the first system with superconductor-based selection coils.\",\"authors\":\"Tuan-Anh Le, Minh Phu Bui, Yaser Hadadian, Khaled Mohamed Gadelmowla, Seungjun Oh, Chaemin Im, Seungyong Hahn, Jungwon Yoon\",\"doi\":\"10.1109/TMI.2024.3419427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Particle Imaging (MPI) is an emerging tomographic modality that allows for precise three-dimensional (3D) mapping of magnetic nanoparticles (MNPs) concentration and distribution. Although significant progress has been made towards improving MPI since its introduction, scaling it up for human applications has proven challenging. High-quality images have been obtained in animal-scale MPI scanners with gradients up to 7 T/m/μ<sub>0</sub>, however, for MPI systems with bore diameters around 200 mm the gradients generated by electromagnets drop significantly to below 0.5 T/m/μ<sub>0</sub>. Given the current technological limitations in image reconstruction and the properties of available MNPs, these low gradients inherently impose limitations on improving MPI resolution for higher precision medical imaging. Utilizing superconductors stands out as a promising approach for developing a human-scale MPI system. In this study, we introduce, for the first time, a human-scale amplitude-modulated (AM) MPI system with superconductor-based selection coils. The system achieves an unprecedented magnetic field gradient of up to 2.5 T/m/μ<sub>0</sub> within a 200 mm bore diameter, enabling large fields of view of 100 × 130 × 98 mm<sup>3</sup> at 2.5 T/m/μ<sub>0</sub> for 3D imaging. While obtained spatial resolution is in the order of previous animal-scale AM MPIs, incorporating superconductors for achieving such high gradients in a 200 mm bore diameter marks a major step toward clinical MPI.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3419427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3419427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁性粒子成像(MPI)是一种新兴的断层成像模式,可对磁性纳米粒子(MNPs)的浓度和分布进行精确的三维(3D)绘图。虽然 MPI 自推出以来在改进方面取得了重大进展,但将其推广到人类应用中仍具有挑战性。动物规模的 MPI 扫描仪可获得梯度高达 7 T/m/μ0 的高质量图像,但对于孔径在 200 毫米左右的 MPI 系统,电磁铁产生的梯度明显降低到 0.5 T/m/μ0 以下。鉴于目前图像重建的技术限制和现有 MNP 的特性,这些低梯度对提高 MPI 分辨率以实现更高精度的医学成像造成了固有的限制。利用超导体是开发人体级 MPI 系统的一种可行方法。在本研究中,我们首次引入了一个人体级调幅(AM)MPI 系统,该系统采用了基于超导体的选择线圈。该系统在 200 毫米的孔径内实现了前所未有的高达 2.5 T/m/μ0 的磁场梯度,从而在 2.5 T/m/μ0 的条件下实现了 100 × 130 × 98 立方毫米的大视野三维成像。虽然所获得的空间分辨率与以前的动物级 AM MPI 相差无几,但在 200 毫米孔径内采用超导体实现如此高的梯度,标志着向临床 MPI 迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards human-scale magnetic particle imaging: development of the first system with superconductor-based selection coils.

Magnetic Particle Imaging (MPI) is an emerging tomographic modality that allows for precise three-dimensional (3D) mapping of magnetic nanoparticles (MNPs) concentration and distribution. Although significant progress has been made towards improving MPI since its introduction, scaling it up for human applications has proven challenging. High-quality images have been obtained in animal-scale MPI scanners with gradients up to 7 T/m/μ0, however, for MPI systems with bore diameters around 200 mm the gradients generated by electromagnets drop significantly to below 0.5 T/m/μ0. Given the current technological limitations in image reconstruction and the properties of available MNPs, these low gradients inherently impose limitations on improving MPI resolution for higher precision medical imaging. Utilizing superconductors stands out as a promising approach for developing a human-scale MPI system. In this study, we introduce, for the first time, a human-scale amplitude-modulated (AM) MPI system with superconductor-based selection coils. The system achieves an unprecedented magnetic field gradient of up to 2.5 T/m/μ0 within a 200 mm bore diameter, enabling large fields of view of 100 × 130 × 98 mm3 at 2.5 T/m/μ0 for 3D imaging. While obtained spatial resolution is in the order of previous animal-scale AM MPIs, incorporating superconductors for achieving such high gradients in a 200 mm bore diameter marks a major step toward clinical MPI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis. Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction estimated navigator. Low-dose CT image super-resolution with noise suppression based on prior degradation estimator and self-guidance mechanism. Table of Contents LOQUAT: Low-Rank Quaternion Reconstruction for Photon-Counting CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1