{"title":"热力学和动力学变暖导致东亚地区未来极端寒冷天气减少","authors":"Donghuan Li, Tianjun Zhou, Youcun Qi, Liwei Zou, Chao Li, Wenxia Zhang, Xiaolong Chen","doi":"10.5194/acp-24-7347-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Cold extremes have large impacts on human society. Understanding the physical processes dominating the changes in cold extremes is crucial for a reliable projection of future climate change. The observed cold extremes have decreased during the last several decades, and this trend will continue under future global warming. Here, we quantitatively identify the contributions of dynamic (changes in large-scale atmospheric circulation) and thermodynamic (rising temperatures resulting from global warming) effects to East Asian cold extremes in the past several decades and in a future warm climate by using two sets of large-ensemble simulations of climate models. We show that the dynamic component accounts for over 80 % of the cold-month (coldest 5 % boreal winter months) surface air temperature (SAT) anomaly over the past 5 decades. However, in a future warm climate, the thermodynamic change is the main contributor to the decreases in the intensity and occurrence probability of East Asian cold extremes, while the dynamic change is also contributive. The intensity of East Asian cold extremes will decrease by around 5 °C at the end of the 21st century, in which the thermodynamic (dynamic) change contributes approximately 75 % (25 %). The present-day (1986–2005) East Asian cold extremes will almost never occur after around 2035, and this will happen 10 years later due solely to thermodynamic change. The upward trend of a positive Arctic Oscillation-like sea level pressure pattern dominates the changes in the dynamic component. The finding provides a useful reference for policymakers in climate change adaptation activities.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"38 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future reduction of cold extremes over East Asia due to thermodynamic and dynamic warming\",\"authors\":\"Donghuan Li, Tianjun Zhou, Youcun Qi, Liwei Zou, Chao Li, Wenxia Zhang, Xiaolong Chen\",\"doi\":\"10.5194/acp-24-7347-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Cold extremes have large impacts on human society. Understanding the physical processes dominating the changes in cold extremes is crucial for a reliable projection of future climate change. The observed cold extremes have decreased during the last several decades, and this trend will continue under future global warming. Here, we quantitatively identify the contributions of dynamic (changes in large-scale atmospheric circulation) and thermodynamic (rising temperatures resulting from global warming) effects to East Asian cold extremes in the past several decades and in a future warm climate by using two sets of large-ensemble simulations of climate models. We show that the dynamic component accounts for over 80 % of the cold-month (coldest 5 % boreal winter months) surface air temperature (SAT) anomaly over the past 5 decades. However, in a future warm climate, the thermodynamic change is the main contributor to the decreases in the intensity and occurrence probability of East Asian cold extremes, while the dynamic change is also contributive. The intensity of East Asian cold extremes will decrease by around 5 °C at the end of the 21st century, in which the thermodynamic (dynamic) change contributes approximately 75 % (25 %). The present-day (1986–2005) East Asian cold extremes will almost never occur after around 2035, and this will happen 10 years later due solely to thermodynamic change. The upward trend of a positive Arctic Oscillation-like sea level pressure pattern dominates the changes in the dynamic component. The finding provides a useful reference for policymakers in climate change adaptation activities.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/acp-24-7347-2024\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-7347-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Future reduction of cold extremes over East Asia due to thermodynamic and dynamic warming
Abstract. Cold extremes have large impacts on human society. Understanding the physical processes dominating the changes in cold extremes is crucial for a reliable projection of future climate change. The observed cold extremes have decreased during the last several decades, and this trend will continue under future global warming. Here, we quantitatively identify the contributions of dynamic (changes in large-scale atmospheric circulation) and thermodynamic (rising temperatures resulting from global warming) effects to East Asian cold extremes in the past several decades and in a future warm climate by using two sets of large-ensemble simulations of climate models. We show that the dynamic component accounts for over 80 % of the cold-month (coldest 5 % boreal winter months) surface air temperature (SAT) anomaly over the past 5 decades. However, in a future warm climate, the thermodynamic change is the main contributor to the decreases in the intensity and occurrence probability of East Asian cold extremes, while the dynamic change is also contributive. The intensity of East Asian cold extremes will decrease by around 5 °C at the end of the 21st century, in which the thermodynamic (dynamic) change contributes approximately 75 % (25 %). The present-day (1986–2005) East Asian cold extremes will almost never occur after around 2035, and this will happen 10 years later due solely to thermodynamic change. The upward trend of a positive Arctic Oscillation-like sea level pressure pattern dominates the changes in the dynamic component. The finding provides a useful reference for policymakers in climate change adaptation activities.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.