揭示氧化铜基催化剂在氨选择性催化氧化过程中实现高 N2 选择性的机理来源

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-06-27 DOI:10.1021/acs.est.4c02656
Mingchu Ran, Yi Dong, Xiao Zhang*, Weixian Li, Zhi Wang, Saisai Lin, Yang Yang, Hao Song, Weihong Wu, Shaojun Liu, Yihan Zhu, Chenghang Zheng and Xiang Gao*, 
{"title":"揭示氧化铜基催化剂在氨选择性催化氧化过程中实现高 N2 选择性的机理来源","authors":"Mingchu Ran,&nbsp;Yi Dong,&nbsp;Xiao Zhang*,&nbsp;Weixian Li,&nbsp;Zhi Wang,&nbsp;Saisai Lin,&nbsp;Yang Yang,&nbsp;Hao Song,&nbsp;Weihong Wu,&nbsp;Shaojun Liu,&nbsp;Yihan Zhu,&nbsp;Chenghang Zheng and Xiang Gao*,&nbsp;","doi":"10.1021/acs.est.4c02656","DOIUrl":null,"url":null,"abstract":"<p >NH<sub>3</sub> emissions from industrial sources and possibly future energy production constitute a threat to human health because of their toxicity and participation in PM<sub>2.5</sub> formation. Ammonia selective catalytic oxidation to N<sub>2</sub> (NH<sub>3</sub>–SCO) is a promising route for NH<sub>3</sub> emission control, but the mechanistic origin of achieving high N<sub>2</sub> selectivity remains elusive. Here we constructed a highly N<sub>2</sub>-selective CuO/TiO<sub>2</sub> catalyst and proposed a CuO<sub><i>x</i></sub> dimer active site based on the observation of a quadratic dependence of NH<sub>3</sub>–SCO reaction rate on CuO<sub><i>x</i></sub> loading, ac-STEM, and <i>ab initio</i> thermodynamic analysis. Combining this with the identification of a critical N<sub>2</sub>H<sub>4</sub> intermediate by in situ DRIFTS characterization, a comprehensive N<sub>2</sub>H<sub>4</sub>-mediated reaction pathway was proposed by DFT calculations. The high N<sub>2</sub> selectivity originated from the preference for NH<sub>2</sub> coupling to generate N<sub>2</sub>H<sub>4</sub> over NH<sub>2</sub> dehydrogenation on the CuO<sub><i>x</i></sub> dimer active site. This work could pave the way for the rational design of efficient NH<sub>3</sub>–SCO catalysts.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Mechanistic Origin of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on CuO-Based Catalyst\",\"authors\":\"Mingchu Ran,&nbsp;Yi Dong,&nbsp;Xiao Zhang*,&nbsp;Weixian Li,&nbsp;Zhi Wang,&nbsp;Saisai Lin,&nbsp;Yang Yang,&nbsp;Hao Song,&nbsp;Weihong Wu,&nbsp;Shaojun Liu,&nbsp;Yihan Zhu,&nbsp;Chenghang Zheng and Xiang Gao*,&nbsp;\",\"doi\":\"10.1021/acs.est.4c02656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >NH<sub>3</sub> emissions from industrial sources and possibly future energy production constitute a threat to human health because of their toxicity and participation in PM<sub>2.5</sub> formation. Ammonia selective catalytic oxidation to N<sub>2</sub> (NH<sub>3</sub>–SCO) is a promising route for NH<sub>3</sub> emission control, but the mechanistic origin of achieving high N<sub>2</sub> selectivity remains elusive. Here we constructed a highly N<sub>2</sub>-selective CuO/TiO<sub>2</sub> catalyst and proposed a CuO<sub><i>x</i></sub> dimer active site based on the observation of a quadratic dependence of NH<sub>3</sub>–SCO reaction rate on CuO<sub><i>x</i></sub> loading, ac-STEM, and <i>ab initio</i> thermodynamic analysis. Combining this with the identification of a critical N<sub>2</sub>H<sub>4</sub> intermediate by in situ DRIFTS characterization, a comprehensive N<sub>2</sub>H<sub>4</sub>-mediated reaction pathway was proposed by DFT calculations. The high N<sub>2</sub> selectivity originated from the preference for NH<sub>2</sub> coupling to generate N<sub>2</sub>H<sub>4</sub> over NH<sub>2</sub> dehydrogenation on the CuO<sub><i>x</i></sub> dimer active site. This work could pave the way for the rational design of efficient NH<sub>3</sub>–SCO catalysts.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c02656\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c02656","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于其毒性和参与 PM2.5 的形成,工业源和未来可能的能源生产排放的 NH3 对人类健康构成威胁。氨选择性催化氧化为 N2(NH3-SCO)是一种很有前景的 NH3 排放控制途径,但实现高 N2 选择性的机理仍不清楚。在此,我们构建了一种高 N2 选择性 CuO/TiO2 催化剂,并根据 NH3-SCO 反应速率与 CuOx 负载的二次函数关系、ac-STEM 和 ab initio 热力学分析,提出了一个 CuOx 二聚体活性位点。结合原位 DRIFTS 表征确定的关键 N2H4 中间体,通过 DFT 计算提出了一个全面的 N2H4 介导的反应途径。N2 的高选择性源于 CuOx 二聚体活性位点上 NH2 偶联生成 N2H4 而非 NH2 脱氢。这项工作可为合理设计高效的 NH3-SCO 催化剂铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling the Mechanistic Origin of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on CuO-Based Catalyst

NH3 emissions from industrial sources and possibly future energy production constitute a threat to human health because of their toxicity and participation in PM2.5 formation. Ammonia selective catalytic oxidation to N2 (NH3–SCO) is a promising route for NH3 emission control, but the mechanistic origin of achieving high N2 selectivity remains elusive. Here we constructed a highly N2-selective CuO/TiO2 catalyst and proposed a CuOx dimer active site based on the observation of a quadratic dependence of NH3–SCO reaction rate on CuOx loading, ac-STEM, and ab initio thermodynamic analysis. Combining this with the identification of a critical N2H4 intermediate by in situ DRIFTS characterization, a comprehensive N2H4-mediated reaction pathway was proposed by DFT calculations. The high N2 selectivity originated from the preference for NH2 coupling to generate N2H4 over NH2 dehydrogenation on the CuOx dimer active site. This work could pave the way for the rational design of efficient NH3–SCO catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Crystalline Phase Regulates Microbial Methylation Potential of Mercury Bound to MoS2 Nanosheets: Implications for Safe Design of Mercury Removal Materials. New Perspective to Evaluate the Carbon Offsetting by Urban Blue-Green Infrastructure: Direct Carbon Sequestration and Indirect Carbon Reduction. Occurrence, Sources and Virulence Potential of Arcobacter butzleri in Urban Municipal Stormwater Systems. Viral and Bacterial Community Dynamics in Food Waste and Digestate from Full-Scale Biogas Plants. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1