近端小气候:超越时空分辨率,改善生态预测

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Global Ecology and Biogeography Pub Date : 2024-06-26 DOI:10.1111/geb.13884
David H. Klinges, J. Alex Baecher, Jonas J. Lembrechts, Ilya M. D. Maclean, Jonathan Lenoir, Caroline Greiser, Michael Ashcroft, Luke J. Evans, Michael R. Kearney, Juha Aalto, Isabel C. Barrio, Pieter De Frenne, Joannès Guillemot, Kristoffer Hylander, Tommaso Jucker, Martin Kopecký, Miska Luoto, Martin Macek, Ivan Nijs, Josef Urban, Liesbeth van den Brink, Pieter Vangansbeke, Jonathan Von Oppen, Jan Wild, Julia Boike, Rafaella Canessa, Marcelo Nosetto, Alexey Rubtsov, Jhonatan Sallo-Bravo, Brett R. Scheffers
{"title":"近端小气候:超越时空分辨率,改善生态预测","authors":"David H. Klinges,&nbsp;J. Alex Baecher,&nbsp;Jonas J. Lembrechts,&nbsp;Ilya M. D. Maclean,&nbsp;Jonathan Lenoir,&nbsp;Caroline Greiser,&nbsp;Michael Ashcroft,&nbsp;Luke J. Evans,&nbsp;Michael R. Kearney,&nbsp;Juha Aalto,&nbsp;Isabel C. Barrio,&nbsp;Pieter De Frenne,&nbsp;Joannès Guillemot,&nbsp;Kristoffer Hylander,&nbsp;Tommaso Jucker,&nbsp;Martin Kopecký,&nbsp;Miska Luoto,&nbsp;Martin Macek,&nbsp;Ivan Nijs,&nbsp;Josef Urban,&nbsp;Liesbeth van den Brink,&nbsp;Pieter Vangansbeke,&nbsp;Jonathan Von Oppen,&nbsp;Jan Wild,&nbsp;Julia Boike,&nbsp;Rafaella Canessa,&nbsp;Marcelo Nosetto,&nbsp;Alexey Rubtsov,&nbsp;Jhonatan Sallo-Bravo,&nbsp;Brett R. Scheffers","doi":"10.1111/geb.13884","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>1960–2018.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (<i>microclimf</i>) in predicting soil temperatures. We then use ERA5, WorldClim and <i>microclimf</i> to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>For predicting soil temperatures, <i>microclimf</i> had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20-fold, and temporal resolution 30-fold respectively.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 9","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions\",\"authors\":\"David H. Klinges,&nbsp;J. Alex Baecher,&nbsp;Jonas J. Lembrechts,&nbsp;Ilya M. D. Maclean,&nbsp;Jonathan Lenoir,&nbsp;Caroline Greiser,&nbsp;Michael Ashcroft,&nbsp;Luke J. Evans,&nbsp;Michael R. Kearney,&nbsp;Juha Aalto,&nbsp;Isabel C. Barrio,&nbsp;Pieter De Frenne,&nbsp;Joannès Guillemot,&nbsp;Kristoffer Hylander,&nbsp;Tommaso Jucker,&nbsp;Martin Kopecký,&nbsp;Miska Luoto,&nbsp;Martin Macek,&nbsp;Ivan Nijs,&nbsp;Josef Urban,&nbsp;Liesbeth van den Brink,&nbsp;Pieter Vangansbeke,&nbsp;Jonathan Von Oppen,&nbsp;Jan Wild,&nbsp;Julia Boike,&nbsp;Rafaella Canessa,&nbsp;Marcelo Nosetto,&nbsp;Alexey Rubtsov,&nbsp;Jhonatan Sallo-Bravo,&nbsp;Brett R. Scheffers\",\"doi\":\"10.1111/geb.13884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>1960–2018.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (<i>microclimf</i>) in predicting soil temperatures. We then use ERA5, WorldClim and <i>microclimf</i> to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>For predicting soil temperatures, <i>microclimf</i> had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20-fold, and temporal resolution 30-fold respectively.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 9\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13884\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13884","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环境数据的尺度通常由其范围(空间面积、时间长度)和分辨率(粒度、时间间隔)来定义。虽然通过这些术语来描述气候数据的尺度适用于大多数气象应用,但对于生态学和生物地理学来说,具有相同时空分辨率和范围的气候数据在与生物体的相关性方面可能会有所不同。在此,我们建议,对于生态学的现实性而言,气候接近性(或气候数据对生物体所处实际条件的代表程度)比气候数据的时空分辨率更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions

Aim

The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.

Location

Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).

Time Period

1960–2018.

Major Taxa Studied

Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.

Methods

We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.

Results

For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20-fold, and temporal resolution 30-fold respectively.

Main Conclusions

We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
期刊最新文献
Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns Issue Information Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1