利用地球静止遥感特有的随机森林机器学习方法进行大陆气溶胶特性和吸收检索

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-06-28 DOI:10.1016/j.rse.2024.114275
Fangwen Bao , Shengbiao Wu , Jinhui Gao , Shuyun Yuan , Yiwen Liu , Kai Huang
{"title":"利用地球静止遥感特有的随机森林机器学习方法进行大陆气溶胶特性和吸收检索","authors":"Fangwen Bao ,&nbsp;Shengbiao Wu ,&nbsp;Jinhui Gao ,&nbsp;Shuyun Yuan ,&nbsp;Yiwen Liu ,&nbsp;Kai Huang","doi":"10.1016/j.rse.2024.114275","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of satellite remote sensing images for retrieving aerosol optical parameters has been extensively discussed over the past few decades. While employing machine learning models is indeed a viable approach, a significant portion of these studies still rely on redundant data. Moreover, the discussion regarding aerosol absorption, a crucial factor for determining aerosol radiative impact and distinguishing aerosol components, is limited in current machine learning studies. In this study, we propose a random forest model to retrieve high-precision aerosol properties and their absorption over land from Himawari-8 geostationary satellite images. Remarkably, this model attains a high degree of accuracy in estimating aerosol optical depth (AOD), absorption aerosol optical depth (AAOD), and single scattering albedo (SSA) of heavy air mass using only seven primary predictors (observational radiances or their mathematical combinations, geometries, and wavelength). For AOD, the new random forest model demonstrates excellent performance on an hourly scale (R<sup>2</sup> ≥ 0.89, MAE &lt; 0.07, RMSE &lt;0.13), &gt;80% of the samples fall within the expected error (EE) range. Concerning AAOD, the validation indicates that at least 65% of AAODs have a bias of ≤50%, with an R<sup>2</sup> exceeding 0.78, MAE ≤ 0.008 and RMSE ≤0.016. SSA also demonstrates a high accuracy (R<sup>2</sup> ≥ 0.57, MAE &lt; 0.03, RMSE &lt;0.05), with &gt;70% of the results have an error ≤ 0.03. Through more comprehensive independent spatiotemporal cross validation, it can be determined that the model also offers reliable spatial and temporal predictions. The proposed RF model is capable of learning aerosol properties under most atmosphere scenarios, providing a reasonable conversion from predictors to AOD and AAOD/SSA under high aerosol loadings. The spatial patterns of these parameters suggest that the retrievals show considerable potential in capturing high aerosol loading in East Asia and biomass burning in Southeast Asia. The method introduced in this study offers a new approach to obtaining aerosol properties from geostationary satellite remote sensing, featuring a flexible process, simple inputs, high accuracy, and enhanced robustness. Additionally, it furnishes supplementary insights into aerosol absorption, presenting new possibilities in determining aerosol radiative impact and distinguishing aerosol components.</p></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing\",\"authors\":\"Fangwen Bao ,&nbsp;Shengbiao Wu ,&nbsp;Jinhui Gao ,&nbsp;Shuyun Yuan ,&nbsp;Yiwen Liu ,&nbsp;Kai Huang\",\"doi\":\"10.1016/j.rse.2024.114275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of satellite remote sensing images for retrieving aerosol optical parameters has been extensively discussed over the past few decades. While employing machine learning models is indeed a viable approach, a significant portion of these studies still rely on redundant data. Moreover, the discussion regarding aerosol absorption, a crucial factor for determining aerosol radiative impact and distinguishing aerosol components, is limited in current machine learning studies. In this study, we propose a random forest model to retrieve high-precision aerosol properties and their absorption over land from Himawari-8 geostationary satellite images. Remarkably, this model attains a high degree of accuracy in estimating aerosol optical depth (AOD), absorption aerosol optical depth (AAOD), and single scattering albedo (SSA) of heavy air mass using only seven primary predictors (observational radiances or their mathematical combinations, geometries, and wavelength). For AOD, the new random forest model demonstrates excellent performance on an hourly scale (R<sup>2</sup> ≥ 0.89, MAE &lt; 0.07, RMSE &lt;0.13), &gt;80% of the samples fall within the expected error (EE) range. Concerning AAOD, the validation indicates that at least 65% of AAODs have a bias of ≤50%, with an R<sup>2</sup> exceeding 0.78, MAE ≤ 0.008 and RMSE ≤0.016. SSA also demonstrates a high accuracy (R<sup>2</sup> ≥ 0.57, MAE &lt; 0.03, RMSE &lt;0.05), with &gt;70% of the results have an error ≤ 0.03. Through more comprehensive independent spatiotemporal cross validation, it can be determined that the model also offers reliable spatial and temporal predictions. The proposed RF model is capable of learning aerosol properties under most atmosphere scenarios, providing a reasonable conversion from predictors to AOD and AAOD/SSA under high aerosol loadings. The spatial patterns of these parameters suggest that the retrievals show considerable potential in capturing high aerosol loading in East Asia and biomass burning in Southeast Asia. The method introduced in this study offers a new approach to obtaining aerosol properties from geostationary satellite remote sensing, featuring a flexible process, simple inputs, high accuracy, and enhanced robustness. Additionally, it furnishes supplementary insights into aerosol absorption, presenting new possibilities in determining aerosol radiative impact and distinguishing aerosol components.</p></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724002931\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724002931","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,人们广泛讨论了利用卫星遥感图像检索气溶胶光学参数的问题。虽然采用机器学习模型确实是一种可行的方法,但这些研究中的很大一部分仍然依赖于冗余数据。此外,气溶胶吸收是确定气溶胶辐射影响和区分气溶胶成分的关键因素,但目前的机器学习研究对气溶胶吸收的讨论非常有限。在这项研究中,我们提出了一种随机森林模型,用于从 Himawari-8 静止卫星图像中检索高精度气溶胶特性及其在陆地上的吸收。值得注意的是,该模型只使用了七个主要预测因子(观测辐射或其数学组合、几何形状和波长),就能高精度地估算重气团的气溶胶光学深度(AOD)、吸收气溶胶光学深度(AAOD)和单散射反照率(SSA)。对于 AOD,新的随机森林模型在小时尺度上表现出卓越的性能(R ≥ 0.89,80% 的样本 MAE 在预期误差(EE)范围内)。关于 AAOD,验证表明至少 65% 的 AAOD 偏差≤50%,R 超过 0.78,MAE ≤ 0.008,RMSE ≤ 0.016。SSA 也表现出很高的准确性(R≥ 0.57,70% 的结果 MAE 误差≤ 0.03)。通过更全面的独立时空交叉验证,可以确定该模型还能提供可靠的时空预测。所提出的射频模型能够在大多数大气情景下学习气溶胶特性,在高气溶胶负荷下提供从预测因子到 AOD 和 AAOD/SSA 的合理转换。这些参数的空间模式表明,检索结果在捕捉东亚的高气溶胶负荷和东南亚的生物质燃烧方面具有相当大的潜力。本研究介绍的方法为从地球静止卫星遥感中获取气溶胶特性提供了一种新方法,具有流程灵活、输入简单、精度高和鲁棒性强等特点。此外,它还为气溶胶吸收提供了补充见解,为确定气溶胶辐射影响和区分气溶胶成分提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing

The utilization of satellite remote sensing images for retrieving aerosol optical parameters has been extensively discussed over the past few decades. While employing machine learning models is indeed a viable approach, a significant portion of these studies still rely on redundant data. Moreover, the discussion regarding aerosol absorption, a crucial factor for determining aerosol radiative impact and distinguishing aerosol components, is limited in current machine learning studies. In this study, we propose a random forest model to retrieve high-precision aerosol properties and their absorption over land from Himawari-8 geostationary satellite images. Remarkably, this model attains a high degree of accuracy in estimating aerosol optical depth (AOD), absorption aerosol optical depth (AAOD), and single scattering albedo (SSA) of heavy air mass using only seven primary predictors (observational radiances or their mathematical combinations, geometries, and wavelength). For AOD, the new random forest model demonstrates excellent performance on an hourly scale (R2 ≥ 0.89, MAE < 0.07, RMSE <0.13), >80% of the samples fall within the expected error (EE) range. Concerning AAOD, the validation indicates that at least 65% of AAODs have a bias of ≤50%, with an R2 exceeding 0.78, MAE ≤ 0.008 and RMSE ≤0.016. SSA also demonstrates a high accuracy (R2 ≥ 0.57, MAE < 0.03, RMSE <0.05), with >70% of the results have an error ≤ 0.03. Through more comprehensive independent spatiotemporal cross validation, it can be determined that the model also offers reliable spatial and temporal predictions. The proposed RF model is capable of learning aerosol properties under most atmosphere scenarios, providing a reasonable conversion from predictors to AOD and AAOD/SSA under high aerosol loadings. The spatial patterns of these parameters suggest that the retrievals show considerable potential in capturing high aerosol loading in East Asia and biomass burning in Southeast Asia. The method introduced in this study offers a new approach to obtaining aerosol properties from geostationary satellite remote sensing, featuring a flexible process, simple inputs, high accuracy, and enhanced robustness. Additionally, it furnishes supplementary insights into aerosol absorption, presenting new possibilities in determining aerosol radiative impact and distinguishing aerosol components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Satellite-based estimation of monthly mean hourly 1-km urban air temperature using a diurnal temperature cycle model Towards robust validation strategies for EO flood maps Observation-based quantification of aerosol transport using optical flow: A satellite perspective to characterize interregional transport of atmospheric pollution TIRVolcH: Thermal Infrared Recognition of Volcanic Hotspots. A single band TIR-based algorithm to detect low-to-high thermal anomalies in volcanic regions. Stability of cloud detection methods for Land Surface Temperature (LST) Climate Data Records (CDRs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1