硅酸盐水泥浆中主要成分的热电特性

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement and Concrete Research Pub Date : 2024-06-26 DOI:10.1016/j.cemconres.2024.107587
Ridwan O. Agbaoye , Jozef Janovec , Andrés Ayuela , Jorge S. Dolado
{"title":"硅酸盐水泥浆中主要成分的热电特性","authors":"Ridwan O. Agbaoye ,&nbsp;Jozef Janovec ,&nbsp;Andrés Ayuela ,&nbsp;Jorge S. Dolado","doi":"10.1016/j.cemconres.2024.107587","DOIUrl":null,"url":null,"abstract":"<div><p>Several experimental studies have been conducted on the thermoelectric properties of cementitious materials, but a detailed inspection of the intrinsic properties of their main ingredients is still missing. This work focuses on the thermoelectric properties of portlandite and tobermorite, two mineral components found in Ordinary Portland Cement pastes. To this end, atomistic simulations were carried out to predict the thermoelectric properties of cement-based materials. The methodology is based on the density functional theory approach together with GW-quasiparticle and Boltzmann transport equation methods. As expected, the undoped minerals have low thermal conductivity. However, both the Seebeck coefficient and the electrical conductivity can be dramatically increased by appropriate carrier doping. In fact, an enhanced figure of merit of Z = 0.6 at 650 K and 0.79 at 600 K is observed for portlandite and tobermorite. Therefore, our results confirm that there are still much promising prospects for enhancing the characteristics of concrete materials for energy harvesting.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":null,"pages":null},"PeriodicalIF":10.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008884624001686/pdfft?md5=852b04b38bf0cca70abbc6b955fdee7a&pid=1-s2.0-S0008884624001686-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric properties of the main species present in Portland cement pastes\",\"authors\":\"Ridwan O. Agbaoye ,&nbsp;Jozef Janovec ,&nbsp;Andrés Ayuela ,&nbsp;Jorge S. Dolado\",\"doi\":\"10.1016/j.cemconres.2024.107587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several experimental studies have been conducted on the thermoelectric properties of cementitious materials, but a detailed inspection of the intrinsic properties of their main ingredients is still missing. This work focuses on the thermoelectric properties of portlandite and tobermorite, two mineral components found in Ordinary Portland Cement pastes. To this end, atomistic simulations were carried out to predict the thermoelectric properties of cement-based materials. The methodology is based on the density functional theory approach together with GW-quasiparticle and Boltzmann transport equation methods. As expected, the undoped minerals have low thermal conductivity. However, both the Seebeck coefficient and the electrical conductivity can be dramatically increased by appropriate carrier doping. In fact, an enhanced figure of merit of Z = 0.6 at 650 K and 0.79 at 600 K is observed for portlandite and tobermorite. Therefore, our results confirm that there are still much promising prospects for enhancing the characteristics of concrete materials for energy harvesting.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0008884624001686/pdfft?md5=852b04b38bf0cca70abbc6b955fdee7a&pid=1-s2.0-S0008884624001686-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624001686\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624001686","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

关于胶凝材料的热电特性已经进行了多项实验研究,但对其主要成分的内在特性仍缺乏详细的研究。这项工作的重点是普通硅酸盐水泥浆中的两种矿物成分波长石和托勃莫来石的热电性能。为此,我们进行了原子模拟,以预测水泥基材料的热电性能。该方法基于密度泛函理论方法以及 GW-类粒子和玻尔兹曼输运方程方法。不出所料,未掺杂矿物的热导率较低。然而,通过适当的载流子掺杂,塞贝克系数和电导率都能显著提高。事实上,砵兰石和托勃莫来石在开氏 650 度和开氏 600 度时的优越性分别达到了 0.6 和 0.79。因此,我们的研究结果证实,在增强混凝土材料的能量收集特性方面仍有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelectric properties of the main species present in Portland cement pastes

Several experimental studies have been conducted on the thermoelectric properties of cementitious materials, but a detailed inspection of the intrinsic properties of their main ingredients is still missing. This work focuses on the thermoelectric properties of portlandite and tobermorite, two mineral components found in Ordinary Portland Cement pastes. To this end, atomistic simulations were carried out to predict the thermoelectric properties of cement-based materials. The methodology is based on the density functional theory approach together with GW-quasiparticle and Boltzmann transport equation methods. As expected, the undoped minerals have low thermal conductivity. However, both the Seebeck coefficient and the electrical conductivity can be dramatically increased by appropriate carrier doping. In fact, an enhanced figure of merit of Z = 0.6 at 650 K and 0.79 at 600 K is observed for portlandite and tobermorite. Therefore, our results confirm that there are still much promising prospects for enhancing the characteristics of concrete materials for energy harvesting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
期刊最新文献
Insights on the mechanical properties and failure mechanisms of calcium silicate hydrates based on deep-learning potential molecular dynamics Importance of adsorption compared with complexation for retarding C3S hydration via adding sodium gluconate Packing properties assessment of cement and alternative powders: Artefacts and protocols Experimental investigation of the impact of additives in low clinker cementitious materials on multi-ion transference numbers and diffusion coefficients Tensile strength and failure mechanism of rock–cement sample: Roles of curing temperature, nano-silica and rock type
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1