{"title":"利用毛细力效应和聚乙烯醇提高 AgNW 柔性透明导电涂层的导电性和附着力","authors":"Marat Kaikanov, Alshyn Abduvalov","doi":"10.1002/aelm.202300876","DOIUrl":null,"url":null,"abstract":"<p>Silver nanowires (AgNW) are prospective for the fabrication of flexible transparent conductive coatings. The main challenge is to ensure low sheet resistance of AgNW coatings at flexible substrates. Herein, a simple low-temperature post-treatment method is proposed for improving the conductivity and adhesion of AgNW coatings which is based on the deposition of distilled water (DI) with a small amount of dissolved polyvinyl alcohol (PVA). Capillary forces cause a decrease in the sheet resistance of AgNW coatings while the presence of PVA significantly improves the adhesion of nanowires to the flexible polyethylene terephthalate (PET) substrates. As a result, coatings with a transparency of 91% and a sheet resistance of 20 Ω sq<sup>‒1</sup> are fabricated. The storage time of coatings in air is increased due to the presence of a thin layer of PVA on AgNW. After 90 days, the sheet resistance of post-treated AgNW coatings is increased by 11 times, while the sheet resistance of untreated coatings is increased by more than 3000 times. The obtained AgNW coatings are utilized as flexible transparent heaters.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202300876","citationCount":"0","resultStr":"{\"title\":\"Improvement of Conductivity and Adhesion of AgNW Flexible Transparent Conductive Coatings by the Capillary Forces Effect and Polyvinyl Alcohol\",\"authors\":\"Marat Kaikanov, Alshyn Abduvalov\",\"doi\":\"10.1002/aelm.202300876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silver nanowires (AgNW) are prospective for the fabrication of flexible transparent conductive coatings. The main challenge is to ensure low sheet resistance of AgNW coatings at flexible substrates. Herein, a simple low-temperature post-treatment method is proposed for improving the conductivity and adhesion of AgNW coatings which is based on the deposition of distilled water (DI) with a small amount of dissolved polyvinyl alcohol (PVA). Capillary forces cause a decrease in the sheet resistance of AgNW coatings while the presence of PVA significantly improves the adhesion of nanowires to the flexible polyethylene terephthalate (PET) substrates. As a result, coatings with a transparency of 91% and a sheet resistance of 20 Ω sq<sup>‒1</sup> are fabricated. The storage time of coatings in air is increased due to the presence of a thin layer of PVA on AgNW. After 90 days, the sheet resistance of post-treated AgNW coatings is increased by 11 times, while the sheet resistance of untreated coatings is increased by more than 3000 times. The obtained AgNW coatings are utilized as flexible transparent heaters.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202300876\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300876\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300876","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improvement of Conductivity and Adhesion of AgNW Flexible Transparent Conductive Coatings by the Capillary Forces Effect and Polyvinyl Alcohol
Silver nanowires (AgNW) are prospective for the fabrication of flexible transparent conductive coatings. The main challenge is to ensure low sheet resistance of AgNW coatings at flexible substrates. Herein, a simple low-temperature post-treatment method is proposed for improving the conductivity and adhesion of AgNW coatings which is based on the deposition of distilled water (DI) with a small amount of dissolved polyvinyl alcohol (PVA). Capillary forces cause a decrease in the sheet resistance of AgNW coatings while the presence of PVA significantly improves the adhesion of nanowires to the flexible polyethylene terephthalate (PET) substrates. As a result, coatings with a transparency of 91% and a sheet resistance of 20 Ω sq‒1 are fabricated. The storage time of coatings in air is increased due to the presence of a thin layer of PVA on AgNW. After 90 days, the sheet resistance of post-treated AgNW coatings is increased by 11 times, while the sheet resistance of untreated coatings is increased by more than 3000 times. The obtained AgNW coatings are utilized as flexible transparent heaters.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.