用于固态钠电池的低成本 NaAlCl4 复合固体电解质中增强的界面传导能力

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-06-29 DOI:10.1002/aenm.202402091
Erick Ruoff, Steven Kmiec, Arumugam Manthiram
{"title":"用于固态钠电池的低成本 NaAlCl4 复合固体电解质中增强的界面传导能力","authors":"Erick Ruoff, Steven Kmiec, Arumugam Manthiram","doi":"10.1002/aenm.202402091","DOIUrl":null,"url":null,"abstract":"All-solid-state sodium batteries offer the advantage of both sustainability and safety. Solid-state electrolytes play a key role, and an oxygen-incorporated NaAlCl<sub>4</sub> composite electrolyte is presented with a high ambient-temperature ionic conductivity of &gt; 0.1 mS cm<sup>−1</sup>. The electrolyte synthesized with a mechanochemical reaction consists of in situ-formed Al<sub>2</sub>O<sub>3</sub> nanoparticles that provide enhanced conduction through an oxychloride phase at the interface. Magic angle spinning nuclear magnetic resonance spectroscopy confirms the formation of Al<sub>2</sub>O<sub>3</sub> and the oxychloride phases at the interface and sheds insights into the origin of the enhanced ionic conductivity of the composite electrolyte. Additionally, simply adding Al<sub>2</sub>O<sub>3</sub> nanoparticles to NaAlCl<sub>4</sub> before mechanochemical synthesis is investigated, and a relationship between Al<sub>2</sub>O<sub>3</sub> surface area and composite electrolyte ionic conductivity is identified. All-solid-state sodium batteries assembled with the composite electrolyte demonstrate a high specific capacity of 124 mA h g<sup>−1</sup>, clearly outperforming the baseline NaAlCl<sub>4</sub> electrolyte. Furthermore, X-ray photoelectron spectroscopy is utilized to understand the origin of capacity fade and obtain insights into electrolyte decomposition products. This work provides a deeper understanding of methods for boosting the ion transport in a low-cost halide solid electrolyte for practical viability of all-solid-state sodium batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Interfacial Conduction in Low-Cost NaAlCl4 Composite Solid Electrolyte for Solid-State Sodium Batteries\",\"authors\":\"Erick Ruoff, Steven Kmiec, Arumugam Manthiram\",\"doi\":\"10.1002/aenm.202402091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-solid-state sodium batteries offer the advantage of both sustainability and safety. Solid-state electrolytes play a key role, and an oxygen-incorporated NaAlCl<sub>4</sub> composite electrolyte is presented with a high ambient-temperature ionic conductivity of &gt; 0.1 mS cm<sup>−1</sup>. The electrolyte synthesized with a mechanochemical reaction consists of in situ-formed Al<sub>2</sub>O<sub>3</sub> nanoparticles that provide enhanced conduction through an oxychloride phase at the interface. Magic angle spinning nuclear magnetic resonance spectroscopy confirms the formation of Al<sub>2</sub>O<sub>3</sub> and the oxychloride phases at the interface and sheds insights into the origin of the enhanced ionic conductivity of the composite electrolyte. Additionally, simply adding Al<sub>2</sub>O<sub>3</sub> nanoparticles to NaAlCl<sub>4</sub> before mechanochemical synthesis is investigated, and a relationship between Al<sub>2</sub>O<sub>3</sub> surface area and composite electrolyte ionic conductivity is identified. All-solid-state sodium batteries assembled with the composite electrolyte demonstrate a high specific capacity of 124 mA h g<sup>−1</sup>, clearly outperforming the baseline NaAlCl<sub>4</sub> electrolyte. Furthermore, X-ray photoelectron spectroscopy is utilized to understand the origin of capacity fade and obtain insights into electrolyte decomposition products. This work provides a deeper understanding of methods for boosting the ion transport in a low-cost halide solid electrolyte for practical viability of all-solid-state sodium batteries.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202402091\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402091","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全固态钠电池具有可持续性和安全性的优点。固态电解质起着关键作用,本文介绍了一种氧掺杂 NaAlCl4 复合电解质,其常温离子电导率高达 > 0.1 mS cm-1。通过机械化学反应合成的电解质包含原位形成的 Al2O3 纳米粒子,可通过界面上的氧氯化相增强传导性。魔角旋转核磁共振光谱证实了 Al2O3 和氧氯化相在界面上的形成,并揭示了复合电解质离子传导性增强的原因。此外,还研究了在机械化学合成之前向 NaAlCl4 中简单添加 Al2O3 纳米颗粒的方法,并确定了 Al2O3 表面积与复合电解质离子电导率之间的关系。用复合电解质组装的全固态钠电池显示出 124 mA h g-1 的高比容量,明显优于基准 NaAlCl4 电解质。此外,还利用 X 射线光电子能谱来了解容量衰减的原因,并深入了解电解质分解产物。这项研究加深了人们对提高低成本卤化物固体电解质离子传输的方法的理解,从而提高了全固态钠电池的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Interfacial Conduction in Low-Cost NaAlCl4 Composite Solid Electrolyte for Solid-State Sodium Batteries
All-solid-state sodium batteries offer the advantage of both sustainability and safety. Solid-state electrolytes play a key role, and an oxygen-incorporated NaAlCl4 composite electrolyte is presented with a high ambient-temperature ionic conductivity of > 0.1 mS cm−1. The electrolyte synthesized with a mechanochemical reaction consists of in situ-formed Al2O3 nanoparticles that provide enhanced conduction through an oxychloride phase at the interface. Magic angle spinning nuclear magnetic resonance spectroscopy confirms the formation of Al2O3 and the oxychloride phases at the interface and sheds insights into the origin of the enhanced ionic conductivity of the composite electrolyte. Additionally, simply adding Al2O3 nanoparticles to NaAlCl4 before mechanochemical synthesis is investigated, and a relationship between Al2O3 surface area and composite electrolyte ionic conductivity is identified. All-solid-state sodium batteries assembled with the composite electrolyte demonstrate a high specific capacity of 124 mA h g−1, clearly outperforming the baseline NaAlCl4 electrolyte. Furthermore, X-ray photoelectron spectroscopy is utilized to understand the origin of capacity fade and obtain insights into electrolyte decomposition products. This work provides a deeper understanding of methods for boosting the ion transport in a low-cost halide solid electrolyte for practical viability of all-solid-state sodium batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
3D Printing of Tungstate Anion Modulated 1T-MoS2 Composite Cathodes for High-Performance Lithium–Sulfur Batteries Solar-Driven Photoelectrochemical Upcycling of Polyimide Plastic Waste with Safe Green Hydrogen Generation Recent Progress and Perspective in Pure Water-Fed Anion Exchange Membrane Water Electrolyzers Silicon-Inspired Analysis of Interfacial Recombination in Perovskite Photovoltaics Boosted Charge Transfer for Highly Efficient Photosynthesis of H2O2 over Z-Scheme I−/K+ Co-Doped g-C3N4/Metal–Organic-Frameworks in Pure Water under Visible Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1