非稳态多站点设计洪水估算及其在设计洪水区域组成分析中的应用

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-07-01 DOI:10.1016/j.jhydrol.2024.131538
Yiming Hu , Ziheng Cao , Yu Chen , Jian Hu , Jukun Guo , Zhongmin Liang
{"title":"非稳态多站点设计洪水估算及其在设计洪水区域组成分析中的应用","authors":"Yiming Hu ,&nbsp;Ziheng Cao ,&nbsp;Yu Chen ,&nbsp;Jian Hu ,&nbsp;Jukun Guo ,&nbsp;Zhongmin Liang","doi":"10.1016/j.jhydrol.2024.131538","DOIUrl":null,"url":null,"abstract":"<div><p>Impacts of climate change and human activities may lead to changes in the spatiotemporal composition of the design flood as well as its size. Previous studies mainly focused on changes in design flood size, while there has been relatively little research on changes in its regional composition. In this study, a nonstationary multi-site design flood estimation method is developed, which is useful for the design flood regional composition analysis under nonstationary conditions. Dynamic copula models are first constructed to analyze the change in the joint distribution of the nonstationary multi-site flood variables with the consideration of the nonstationarity of the marginal distribution and copula structure parameters. Then the design flood combinations in multi-site for a specified design standard are calculated by comprehensively applying the equivalent reliability method, the expectation conditional and the most-likely conditional combination strategies, which considers the future precipitation change and design lifespan length impacts on the design flood. Finally, the uncertainty of the multi-site design flood estimation caused by the model parameters uncertainty is evaluated. A case study, based on the annual maximum 7-day (AM7) flood volume in the Yichang (YC) and Cuntan (CT) sites, is conducted to illustrate this method. Results show that flood quantiles in the YC and CT sites exhibit an increasing trend as the precipitation projections will increase in the future, but the flood quantiles in the YC site are less compared to the historical period because of the huge regulation and storage effect of the Three Gorges Reservoir. In addition, the design flood combination in the CT and YC sites are calculated and the CT design floods from the expectation combination strategy are bigger than those provided by the most-likely combination strategy.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonstationary multi-site design flood estimation and application to design flood regional composition analysis\",\"authors\":\"Yiming Hu ,&nbsp;Ziheng Cao ,&nbsp;Yu Chen ,&nbsp;Jian Hu ,&nbsp;Jukun Guo ,&nbsp;Zhongmin Liang\",\"doi\":\"10.1016/j.jhydrol.2024.131538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Impacts of climate change and human activities may lead to changes in the spatiotemporal composition of the design flood as well as its size. Previous studies mainly focused on changes in design flood size, while there has been relatively little research on changes in its regional composition. In this study, a nonstationary multi-site design flood estimation method is developed, which is useful for the design flood regional composition analysis under nonstationary conditions. Dynamic copula models are first constructed to analyze the change in the joint distribution of the nonstationary multi-site flood variables with the consideration of the nonstationarity of the marginal distribution and copula structure parameters. Then the design flood combinations in multi-site for a specified design standard are calculated by comprehensively applying the equivalent reliability method, the expectation conditional and the most-likely conditional combination strategies, which considers the future precipitation change and design lifespan length impacts on the design flood. Finally, the uncertainty of the multi-site design flood estimation caused by the model parameters uncertainty is evaluated. A case study, based on the annual maximum 7-day (AM7) flood volume in the Yichang (YC) and Cuntan (CT) sites, is conducted to illustrate this method. Results show that flood quantiles in the YC and CT sites exhibit an increasing trend as the precipitation projections will increase in the future, but the flood quantiles in the YC site are less compared to the historical period because of the huge regulation and storage effect of the Three Gorges Reservoir. In addition, the design flood combination in the CT and YC sites are calculated and the CT design floods from the expectation combination strategy are bigger than those provided by the most-likely combination strategy.</p></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002216942400934X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002216942400934X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

气候变化和人类活动的影响可能会导致设计洪水的时空构成及其规模发生变化。以往的研究主要关注设计洪水规模的变化,而对其区域组成变化的研究相对较少。本研究建立了一种非平稳多站点设计洪水估算方法,可用于非平稳条件下的设计洪水区域组成分析。首先构建动态 copula 模型,在考虑边际分布和 copula 结构参数非平稳性的情况下,分析非平稳多站点洪水变量联合分布的变化。然后,综合应用等效可靠度法、期望条件法和最可能条件组合策略,考虑未来降水变化和设计寿命长度对设计洪水的影响,计算出指定设计标准下的多站点设计洪水组合。最后,评估了由模型参数不确定性引起的多站点设计洪水估算的不确定性。以宜昌(YC)和寸滩(CT)两地的年最大 7 天(AM7)洪水量为案例,对该方法进行了说明。结果表明,随着未来降水量预测值的增加,宜昌和寸滩两地的洪水量级呈上升趋势,但由于三峡水库的巨大调节和调蓄作用,宜昌洪水量级与历史同期相比有所降低。此外,计算了 CT 和 YC 站点的设计洪水组合,期望组合策略的 CT 设计洪水比最可能组合策略的设计洪水大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonstationary multi-site design flood estimation and application to design flood regional composition analysis

Impacts of climate change and human activities may lead to changes in the spatiotemporal composition of the design flood as well as its size. Previous studies mainly focused on changes in design flood size, while there has been relatively little research on changes in its regional composition. In this study, a nonstationary multi-site design flood estimation method is developed, which is useful for the design flood regional composition analysis under nonstationary conditions. Dynamic copula models are first constructed to analyze the change in the joint distribution of the nonstationary multi-site flood variables with the consideration of the nonstationarity of the marginal distribution and copula structure parameters. Then the design flood combinations in multi-site for a specified design standard are calculated by comprehensively applying the equivalent reliability method, the expectation conditional and the most-likely conditional combination strategies, which considers the future precipitation change and design lifespan length impacts on the design flood. Finally, the uncertainty of the multi-site design flood estimation caused by the model parameters uncertainty is evaluated. A case study, based on the annual maximum 7-day (AM7) flood volume in the Yichang (YC) and Cuntan (CT) sites, is conducted to illustrate this method. Results show that flood quantiles in the YC and CT sites exhibit an increasing trend as the precipitation projections will increase in the future, but the flood quantiles in the YC site are less compared to the historical period because of the huge regulation and storage effect of the Three Gorges Reservoir. In addition, the design flood combination in the CT and YC sites are calculated and the CT design floods from the expectation combination strategy are bigger than those provided by the most-likely combination strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Generation of root zone soil moisture from the integration of an all-weather satellite surface soil moisture estimates and an analytical model: A preliminary result in China DRSTF: A hybrid-approach framework for reservoir water temperature forecasting considering operation response Development of a modular distributed hydro-thermal coupled hydrological model for cold regions Vegetation greening mitigates the positive impacts of climate change on water availability in Northwest China Impacts of changing weather patterns on the dynamics of water pollutants in agricultural catchments: Insights from 11-year high temporal resolution data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1