可重复使用的 CS-Ca@PEI/CuMnO2 水凝胶珠用于过一硫酸盐激活降解刚果红

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-06-28 DOI:10.1021/acs.langmuir.4c00659
Jinyan Yang, Zhaoxing Hu, Wenhui Rao, Yijun Xie* and Chuanbai Yu*, 
{"title":"可重复使用的 CS-Ca@PEI/CuMnO2 水凝胶珠用于过一硫酸盐激活降解刚果红","authors":"Jinyan Yang,&nbsp;Zhaoxing Hu,&nbsp;Wenhui Rao,&nbsp;Yijun Xie* and Chuanbai Yu*,&nbsp;","doi":"10.1021/acs.langmuir.4c00659","DOIUrl":null,"url":null,"abstract":"<p >Metal oxides can activate peroxymonosulfate (PMS) for the catalytic degradation of organic dyes. However, achieving high catalytic efficiency, structural stability, ease of recovery, and recyclability remains challenging for both research and practical applications. To address these requirements, a bimetallic oxide, CuMnO<sub>2</sub>, was synthesized using a simple hydrothermal approach and was encapsulated to create hydrogel beads, CS-Ca@PEI/CuMnO<sub>2</sub>. Subsequently, CS-Ca@PEI/CuMnO<sub>2</sub> was used to activate PMS and establish a solid–liquid heterogeneous oxidation system (CS-Ca@PEI/CuMnO<sub>2</sub>/PMS) for the degradation of Congo red (CR). The effects of various parameters such as different systems, catalyst dosages, initial pH values, PMS concentrations, temperatures, and anion types on the catalytic degradation properties of CS-Ca@PEI/CuMnO<sub>2</sub> for CR were systematically evaluated. The results indicated that CS-Ca@PEI/CuMnO<sub>2</sub> has exceptional degradation capacity, achieving 91.0% degradation of CR at pH 7. After three degradation cycles, the catalyst maintained an 86.9% degradation efficiency compared to its original performance, highlighting its robust structural stability. The presence of reactive radicals, specifically <sup>1</sup>O<sub>2</sub> and <sup>•</sup>O<sub>2</sub><sup>–</sup>, were confirmed through quenching experiments, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance spectroscopy (EPR). Liquid chromatography-tandem mass spectrometry (LC-MS) revealed ten proposed intermediates in the catalytic degradation process. Due to its exceptional catalytic performance, structural durability, recyclability, and ease of retrieval, the catalyst shows great potential for effectively removing organic pollutants from industrial wastewater.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reusable CS-Ca@PEI/CuMnO2 Hydrogel Beads for Peroxymonosulfate-Activated Degradation of Congo Red\",\"authors\":\"Jinyan Yang,&nbsp;Zhaoxing Hu,&nbsp;Wenhui Rao,&nbsp;Yijun Xie* and Chuanbai Yu*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c00659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal oxides can activate peroxymonosulfate (PMS) for the catalytic degradation of organic dyes. However, achieving high catalytic efficiency, structural stability, ease of recovery, and recyclability remains challenging for both research and practical applications. To address these requirements, a bimetallic oxide, CuMnO<sub>2</sub>, was synthesized using a simple hydrothermal approach and was encapsulated to create hydrogel beads, CS-Ca@PEI/CuMnO<sub>2</sub>. Subsequently, CS-Ca@PEI/CuMnO<sub>2</sub> was used to activate PMS and establish a solid–liquid heterogeneous oxidation system (CS-Ca@PEI/CuMnO<sub>2</sub>/PMS) for the degradation of Congo red (CR). The effects of various parameters such as different systems, catalyst dosages, initial pH values, PMS concentrations, temperatures, and anion types on the catalytic degradation properties of CS-Ca@PEI/CuMnO<sub>2</sub> for CR were systematically evaluated. The results indicated that CS-Ca@PEI/CuMnO<sub>2</sub> has exceptional degradation capacity, achieving 91.0% degradation of CR at pH 7. After three degradation cycles, the catalyst maintained an 86.9% degradation efficiency compared to its original performance, highlighting its robust structural stability. The presence of reactive radicals, specifically <sup>1</sup>O<sub>2</sub> and <sup>•</sup>O<sub>2</sub><sup>–</sup>, were confirmed through quenching experiments, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance spectroscopy (EPR). Liquid chromatography-tandem mass spectrometry (LC-MS) revealed ten proposed intermediates in the catalytic degradation process. Due to its exceptional catalytic performance, structural durability, recyclability, and ease of retrieval, the catalyst shows great potential for effectively removing organic pollutants from industrial wastewater.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00659\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00659","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属氧化物可激活过氧单硫酸盐(PMS),对有机染料进行催化降解。然而,要实现高催化效率、结构稳定性、易回收性和可回收性,对于研究和实际应用来说仍然具有挑战性。为了满足这些要求,我们采用简单的水热法合成了双金属氧化物 CuMnO2,并将其封装成水凝胶珠 CS-Ca@PEI/CuMnO2。随后,CS-Ca@PEI/CuMnO2 被用于活化 PMS,并建立了一个用于降解刚果红(CR)的固液异构氧化体系(CS-Ca@PEI/CuMnO2/PMS)。系统评估了不同体系、催化剂用量、初始 pH 值、PMS 浓度、温度和阴离子类型等参数对 CS-Ca@PEI/CuMnO2 催化降解刚果红性能的影响。结果表明,CS-Ca@PEI/CuMnO2 具有优异的降解能力,在 pH 值为 7 时对 CR 的降解率达到 91.0%。通过淬灭实验、X 射线光电子能谱(XPS)和电子顺磁共振能谱(EPR)证实了活性自由基的存在,特别是 1O2 和 -O2-。液相色谱-串联质谱法(LC-MS)揭示了催化降解过程中的十种拟中间产物。由于该催化剂具有催化性能优异、结构耐用、可回收利用和易于回收等特点,因此在有效去除工业废水中的有机污染物方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reusable CS-Ca@PEI/CuMnO2 Hydrogel Beads for Peroxymonosulfate-Activated Degradation of Congo Red

Metal oxides can activate peroxymonosulfate (PMS) for the catalytic degradation of organic dyes. However, achieving high catalytic efficiency, structural stability, ease of recovery, and recyclability remains challenging for both research and practical applications. To address these requirements, a bimetallic oxide, CuMnO2, was synthesized using a simple hydrothermal approach and was encapsulated to create hydrogel beads, CS-Ca@PEI/CuMnO2. Subsequently, CS-Ca@PEI/CuMnO2 was used to activate PMS and establish a solid–liquid heterogeneous oxidation system (CS-Ca@PEI/CuMnO2/PMS) for the degradation of Congo red (CR). The effects of various parameters such as different systems, catalyst dosages, initial pH values, PMS concentrations, temperatures, and anion types on the catalytic degradation properties of CS-Ca@PEI/CuMnO2 for CR were systematically evaluated. The results indicated that CS-Ca@PEI/CuMnO2 has exceptional degradation capacity, achieving 91.0% degradation of CR at pH 7. After three degradation cycles, the catalyst maintained an 86.9% degradation efficiency compared to its original performance, highlighting its robust structural stability. The presence of reactive radicals, specifically 1O2 and O2, were confirmed through quenching experiments, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance spectroscopy (EPR). Liquid chromatography-tandem mass spectrometry (LC-MS) revealed ten proposed intermediates in the catalytic degradation process. Due to its exceptional catalytic performance, structural durability, recyclability, and ease of retrieval, the catalyst shows great potential for effectively removing organic pollutants from industrial wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Mechanism of Sulfate Radical Formation on Activation of Persulfate Using Doped Metal Oxide and Its Role in Degradation of Tartrazine Dye in an Aqueous Solution. Selective SERS Sensing of R6G Molecules Using MoS2 Nanoflowers under Pressure. Synthesis and Fabrication of Metal Cation Intercalation in Multilayered Ti3C2Tx Composite CNF Electrode for Asymmetric Coin Cell Supercapacitors. Unveiling the Electrostatically Driven Collapsing and Relaxation of Polyelectrolyte-Colloid Complexes: A Tunable Pathway to Colloidal Assembly. Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1