心脏组织驻留囊泡通过miRNA的协同作用,对不同年龄和性别的抗纤维化表型进行不同程度的调节。

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Biomaterials Pub Date : 2024-06-21 DOI:10.1016/j.biomaterials.2024.122671
George Ronan , Gokhan Bahcecioglu , Jun Yang , Pinar Zorlutuna
{"title":"心脏组织驻留囊泡通过miRNA的协同作用,对不同年龄和性别的抗纤维化表型进行不同程度的调节。","authors":"George Ronan ,&nbsp;Gokhan Bahcecioglu ,&nbsp;Jun Yang ,&nbsp;Pinar Zorlutuna","doi":"10.1016/j.biomaterials.2024.122671","DOIUrl":null,"url":null,"abstract":"<div><p>Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated <em>in vitro</em>, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.</p></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac tissue-resident vesicles differentially modulate anti-fibrotic phenotype by age and sex through synergistic miRNA effects\",\"authors\":\"George Ronan ,&nbsp;Gokhan Bahcecioglu ,&nbsp;Jun Yang ,&nbsp;Pinar Zorlutuna\",\"doi\":\"10.1016/j.biomaterials.2024.122671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated <em>in vitro</em>, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.</p></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961224002059\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224002059","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

衰老是心血管疾病的一个风险因素,而心血管疾病是导致全球死亡的主要原因。心脏纤维化是反复心肌梗塞的有害结果,会增加发病风险和未来的伤害。有趣的是,年轻人和老年人以及男性和女性的心脏纤维化发生率和结果都不尽相同。在这里,我们首次从人类和小鼠模型中的年轻或老年男性和女性左心室中识别并分离出与基质结合的细胞外泡。这些左心室囊泡(LVVs)在人类和小鼠的这四个组群中显示出形态和含量上的差异。我们还在体外研究了左心室小泡对纤维化的影响,老年雄性左心室小泡具有促纤维化作用,而其他左心室小泡则具有抗纤维化作用。从这些低变异体中,我们可以鉴定出促进抗纤维化作用的治疗性miRNA。我们鉴定出了四种 miRNA,它们一起转染时具有显著的心脏保护作用,而不是单独作用。这表明,miRNA 的协同作用可以调节细胞反应,而不仅仅是单个的 miRNA。此外,左心室 miRNA 含量的慢性变化可能是造成心脏纤维化临床结果的性别和年龄依赖性差异的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cardiac tissue-resident vesicles differentially modulate anti-fibrotic phenotype by age and sex through synergistic miRNA effects

Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated in vitro, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
期刊最新文献
Multilayered Hydrogel Scaffold Construct with Native Tissue Matched Elastic Modulus: A Regenerative Microenvironment for Urethral Scar-free Healing Nano-enabled regulation of DNA damage in tumor cells to enhance neoantigen-based pancreatic cancer immunotherapy. Targeted reprogramming of tumor-associated macrophages for overcoming glioblastoma resistance to chemotherapy and immunotherapy. Injectable bioadhesive hydrogel as a local nanomedicine depot for targeted regulation of inflammation and ferroptosis in rheumatoid arthritis Camouflaging nanoreactor traverse the blood-brain barrier to catalyze redox cascade for synergistic therapy of glioblastoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1