[β地中海贫血治疗新方法概述]。

Q3 Medicine 生理学报 Pub Date : 2024-06-25
Xian-Feng Guo, Lu Han, Xu-Chao Zhang, Hai-Hang Zhang, Jing Liu
{"title":"[β地中海贫血治疗新方法概述]。","authors":"Xian-Feng Guo, Lu Han, Xu-Chao Zhang, Hai-Hang Zhang, Jing Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobinopathies are one of the most common single-gene genetic disorders globally, with approximately 1% to 5% of the global population carrying the mutated gene for thalassemia. Thalassemia are classified into transfusion-dependent thalassemia and non-transfusion-dependent thalassemia based on the need for blood transfusion. Traditional treatment modalities include blood transfusion, splenectomy, hydroxyurea therapy, and iron chelation therapy, which are now widely used for clinical treatment and constitute the main methods recommended in the β-thalassemia treatment guidelines. However, there are multiple barriers and limitations to the application of these approaches, and there is an urgent need to explore new therapeutic approaches. With the in-depth study of the pathophysiological process of β-thalassemia, a deeper understanding of the pathogenesis of the disease has been gained. It has been demonstrated that the pathogenesis of thalassemia is closely related to ineffective erythropoiesis (IE), imbalance in the ratio of α/β-globin protein chains and iron overload. New therapeutic approaches are emerging for different pathogenic mechanisms. Among them, new drugs for the treatment of IE mainly include activin receptor II trap ligands, Janus kinase 2 inhibitors, pyruvate kinase activators, and glycine transporter protein 1 inhibitors. Correcting the imbalance in the hemoglobin chain is mainly due to emerging technologies such as bone marrow transplantation and gene editing. Measures in reducing iron overload are associated with inhibiting the activity of transferrin and hepcidin. These new approaches provide new ideas and options for the treatment and management of β-thalassemia.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"76 3","pages":"496-506"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Overview of new approaches to β-thalassemia treatment].\",\"authors\":\"Xian-Feng Guo, Lu Han, Xu-Chao Zhang, Hai-Hang Zhang, Jing Liu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemoglobinopathies are one of the most common single-gene genetic disorders globally, with approximately 1% to 5% of the global population carrying the mutated gene for thalassemia. Thalassemia are classified into transfusion-dependent thalassemia and non-transfusion-dependent thalassemia based on the need for blood transfusion. Traditional treatment modalities include blood transfusion, splenectomy, hydroxyurea therapy, and iron chelation therapy, which are now widely used for clinical treatment and constitute the main methods recommended in the β-thalassemia treatment guidelines. However, there are multiple barriers and limitations to the application of these approaches, and there is an urgent need to explore new therapeutic approaches. With the in-depth study of the pathophysiological process of β-thalassemia, a deeper understanding of the pathogenesis of the disease has been gained. It has been demonstrated that the pathogenesis of thalassemia is closely related to ineffective erythropoiesis (IE), imbalance in the ratio of α/β-globin protein chains and iron overload. New therapeutic approaches are emerging for different pathogenic mechanisms. Among them, new drugs for the treatment of IE mainly include activin receptor II trap ligands, Janus kinase 2 inhibitors, pyruvate kinase activators, and glycine transporter protein 1 inhibitors. Correcting the imbalance in the hemoglobin chain is mainly due to emerging technologies such as bone marrow transplantation and gene editing. Measures in reducing iron overload are associated with inhibiting the activity of transferrin and hepcidin. These new approaches provide new ideas and options for the treatment and management of β-thalassemia.</p>\",\"PeriodicalId\":7134,\"journal\":{\"name\":\"生理学报\",\"volume\":\"76 3\",\"pages\":\"496-506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

血红蛋白病是全球最常见的单基因遗传疾病之一,全球约有 1%至 5%的人携带地中海贫血的突变基因。地中海贫血根据输血需要分为输血依赖型地中海贫血和非输血依赖型地中海贫血。传统的治疗方法包括输血、脾切除、羟基脲治疗和螯合铁治疗,这些方法目前已广泛应用于临床治疗,也是β地中海贫血治疗指南推荐的主要方法。然而,这些方法的应用存在多种障碍和限制,迫切需要探索新的治疗方法。随着对β-地中海贫血病理生理过程的深入研究,人们对该病的发病机制有了更深入的认识。研究表明,地中海贫血的发病机制与无效红细胞生成(IE)、α/β-球蛋白链比例失调和铁超载密切相关。针对不同的致病机制,新的治疗方法不断涌现。其中,治疗 IE 的新药主要包括激活素受体 II 捕获配体、Janus 激酶 2 抑制剂、丙酮酸激酶激活剂和甘氨酸转运蛋白 1 抑制剂。纠正血红蛋白链失衡主要依靠骨髓移植和基因编辑等新兴技术。减轻铁过载的措施与抑制转铁蛋白和血红蛋白的活性有关。这些新方法为治疗和管理β地中海贫血症提供了新思路和新选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Overview of new approaches to β-thalassemia treatment].

Hemoglobinopathies are one of the most common single-gene genetic disorders globally, with approximately 1% to 5% of the global population carrying the mutated gene for thalassemia. Thalassemia are classified into transfusion-dependent thalassemia and non-transfusion-dependent thalassemia based on the need for blood transfusion. Traditional treatment modalities include blood transfusion, splenectomy, hydroxyurea therapy, and iron chelation therapy, which are now widely used for clinical treatment and constitute the main methods recommended in the β-thalassemia treatment guidelines. However, there are multiple barriers and limitations to the application of these approaches, and there is an urgent need to explore new therapeutic approaches. With the in-depth study of the pathophysiological process of β-thalassemia, a deeper understanding of the pathogenesis of the disease has been gained. It has been demonstrated that the pathogenesis of thalassemia is closely related to ineffective erythropoiesis (IE), imbalance in the ratio of α/β-globin protein chains and iron overload. New therapeutic approaches are emerging for different pathogenic mechanisms. Among them, new drugs for the treatment of IE mainly include activin receptor II trap ligands, Janus kinase 2 inhibitors, pyruvate kinase activators, and glycine transporter protein 1 inhibitors. Correcting the imbalance in the hemoglobin chain is mainly due to emerging technologies such as bone marrow transplantation and gene editing. Measures in reducing iron overload are associated with inhibiting the activity of transferrin and hepcidin. These new approaches provide new ideas and options for the treatment and management of β-thalassemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生理学报
生理学报 Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
期刊最新文献
[Exogenous EPO protects HT22 cells from intermittent hypoxia-induced injury by activating JAK2-STAT5 signaling pathway]. [m6A RNA methylation is a potential biological target for neuropathic pain]. [Research progress in the regulation of functional homeostasis of adipose tissue by exosomal miRNA]. [Research progress of human induced pluripotent stem cells in the establishment and application of dilated cardiomyopathy disease model]. [Research progress of the effects of high-intensity interval training on excess post-exercise oxygen consumption in human].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1