全随机效应模型(FREM):实用使用指南。

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY CPT: Pharmacometrics & Systems Pharmacology Pub Date : 2024-06-27 DOI:10.1002/psp4.13190
E. Niclas Jonsson, Joakim Nyberg
{"title":"全随机效应模型(FREM):实用使用指南。","authors":"E. Niclas Jonsson,&nbsp;Joakim Nyberg","doi":"10.1002/psp4.13190","DOIUrl":null,"url":null,"abstract":"<p>The full random-effects model (FREM) is an innovative and relatively novel covariate modeling technique. It differs from other covariate modeling approaches in that it treats covariates as observations and captures their impact on model parameters using their covariances. These unique characteristics mean that FREM is insensitive to correlations between covariates and implicitly handles missing covariate data. In practice, this implies that covariates are less likely to be excluded from the modeling scope in light of the observed data. FREM has been shown to be a useful modeling method for small datasets, but its pre-specification properties make it a very compelling modeling choice for late-stage phases of drug development. The present tutorial aims to explain what FREM models are and how they can be used in practice.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":"13 8","pages":"1297-1308"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13190","citationCount":"0","resultStr":"{\"title\":\"Full random effects models (FREM): A practical usage guide\",\"authors\":\"E. Niclas Jonsson,&nbsp;Joakim Nyberg\",\"doi\":\"10.1002/psp4.13190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The full random-effects model (FREM) is an innovative and relatively novel covariate modeling technique. It differs from other covariate modeling approaches in that it treats covariates as observations and captures their impact on model parameters using their covariances. These unique characteristics mean that FREM is insensitive to correlations between covariates and implicitly handles missing covariate data. In practice, this implies that covariates are less likely to be excluded from the modeling scope in light of the observed data. FREM has been shown to be a useful modeling method for small datasets, but its pre-specification properties make it a very compelling modeling choice for late-stage phases of drug development. The present tutorial aims to explain what FREM models are and how they can be used in practice.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\"13 8\",\"pages\":\"1297-1308\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13190\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13190\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

全随机效应模型(FREM)是一种创新的、相对新颖的协变量建模技术。它与其他协变量建模方法的不同之处在于,它将协变量视为观测值,并利用协变量的协方差来捕捉它们对模型参数的影响。这些独特的特点意味着 FREM 对协变量之间的相关性不敏感,并能隐含地处理缺失的协变量数据。在实践中,这意味着根据观察到的数据,不太可能将协变量排除在建模范围之外。FREM 已被证明是一种适用于小型数据集的建模方法,但其预先指定的特性使其成为药物开发后期阶段非常有吸引力的建模选择。本教程旨在解释什么是 FREM 模型以及如何将其用于实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full random effects models (FREM): A practical usage guide

The full random-effects model (FREM) is an innovative and relatively novel covariate modeling technique. It differs from other covariate modeling approaches in that it treats covariates as observations and captures their impact on model parameters using their covariances. These unique characteristics mean that FREM is insensitive to correlations between covariates and implicitly handles missing covariate data. In practice, this implies that covariates are less likely to be excluded from the modeling scope in light of the observed data. FREM has been shown to be a useful modeling method for small datasets, but its pre-specification properties make it a very compelling modeling choice for late-stage phases of drug development. The present tutorial aims to explain what FREM models are and how they can be used in practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
期刊最新文献
Clinical study design strategies to mitigate confounding effects of time-dependent clearance on dose optimization of therapeutic antibodies. Exploration of the potential impact of batch-to-batch variability on the establishment of pharmacokinetic bioequivalence for inhalation powder drug products. Population pharmacokinetics of selexipag for dose selection and confirmation in pediatric patients with pulmonary arterial hypertension. Issue Information Exposure-response modeling of liver fat imaging endpoints in non-alcoholic fatty liver disease populations administered ervogastat alone and co-administered with clesacostat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1