DNA 甲基化的动态及其对植物胚胎发生的影响。

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-06-27 DOI:10.1016/j.pbi.2024.102593
Jennifer M. Frost , Ji Hoon Rhee , Yeonhee Choi
{"title":"DNA 甲基化的动态及其对植物胚胎发生的影响。","authors":"Jennifer M. Frost ,&nbsp;Ji Hoon Rhee ,&nbsp;Yeonhee Choi","doi":"10.1016/j.pbi.2024.102593","DOIUrl":null,"url":null,"abstract":"<div><p>Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102593"},"PeriodicalIF":8.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000840/pdfft?md5=b5e086b0ba1aa6b46eadfe00a665c8bb&pid=1-s2.0-S1369526624000840-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of DNA methylation and its impact on plant embryogenesis\",\"authors\":\"Jennifer M. Frost ,&nbsp;Ji Hoon Rhee ,&nbsp;Yeonhee Choi\",\"doi\":\"10.1016/j.pbi.2024.102593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"81 \",\"pages\":\"Article 102593\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369526624000840/pdfft?md5=b5e086b0ba1aa6b46eadfe00a665c8bb&pid=1-s2.0-S1369526624000840-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624000840\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000840","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

开花植物在发育过程中表现出独特的 DNA 甲基化动态。种子的发育和胚胎是孢子体生命周期的起点,因此应特别关注。目前,CHH 甲基化的积累已被认为是胚胎发育的高度特征。这一过程的发生被认为是为了抑制潜在有害的转座元件表达,不过也发现了其在促进种子休眠和耐干旱方面的作用。最近的研究表明,胚胎中增加的 CHH 甲基化既存在于植物其他部位未甲基化的新基因座上,也存在于共享基因座上,表现出更密集的甲基化。与哺乳动物相比,DNA甲基化在植物顺式调控基因调控中的作用尚不十分明确,在此我们将讨论转座元件调控和DNA甲基化在动态基因表达中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of DNA methylation and its impact on plant embryogenesis

Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Grass awns: Morphological diversity arising from developmental constraint New perspectives of post-GWAS analyses: From markers to causal genes for more precise crop breeding Beat the heat: Breeding, genomics, and gene editing for high nighttime temperature tolerance in rice Gene regulatory networks in abiotic stress responses via single-cell sequencing and spatial technologies: Advances and opportunities Chitins and chitosans–A tale of discovery and disguise, of attachment and attainment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1