利用介电泳技术的新型平行板连续细胞分离装置的提案和性能评估。

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS ELECTROPHORESIS Pub Date : 2024-06-27 DOI:10.1002/elps.202400027
Yoshinori Seki, Aoi Nagasaka, Tsukushi Gondo, Shigeru Tada
{"title":"利用介电泳技术的新型平行板连续细胞分离装置的提案和性能评估。","authors":"Yoshinori Seki,&nbsp;Aoi Nagasaka,&nbsp;Tsukushi Gondo,&nbsp;Shigeru Tada","doi":"10.1002/elps.202400027","DOIUrl":null,"url":null,"abstract":"<p>Along with the rapid development of cellular biological research in recent years, there has been an urgent need for a high-speed, high-precision method of separating target cells from a highly heterogeneous cell population. Among the various cell separation technologies proposed so far, dielectrophoresis (DEP)-based approaches have shown particular promise because they are noninvasive to cells. We have developed a new DEP-based device to separate large numbers of live and dead cells of the human mammary cell line MCF10A. In this study, we validated the separation performance of this device. The results showed the successful separation of a higher percentage of cells than in previous studies, with a separation efficiency higher than 90%. In the past, there have been no confirmed cases in which a separation rate of over 90% and high-speed processing of a large number of cells were simultaneously achieved. It was shown that the proposed device can process large numbers of cells at high speed and with high accuracy.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal and performance evaluation of a new parallel plate continuous cell separation device using dielectrophoresis\",\"authors\":\"Yoshinori Seki,&nbsp;Aoi Nagasaka,&nbsp;Tsukushi Gondo,&nbsp;Shigeru Tada\",\"doi\":\"10.1002/elps.202400027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Along with the rapid development of cellular biological research in recent years, there has been an urgent need for a high-speed, high-precision method of separating target cells from a highly heterogeneous cell population. Among the various cell separation technologies proposed so far, dielectrophoresis (DEP)-based approaches have shown particular promise because they are noninvasive to cells. We have developed a new DEP-based device to separate large numbers of live and dead cells of the human mammary cell line MCF10A. In this study, we validated the separation performance of this device. The results showed the successful separation of a higher percentage of cells than in previous studies, with a separation efficiency higher than 90%. In the past, there have been no confirmed cases in which a separation rate of over 90% and high-speed processing of a large number of cells were simultaneously achieved. It was shown that the proposed device can process large numbers of cells at high speed and with high accuracy.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400027\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着细胞生物学研究的快速发展,人们迫切需要一种高速、高精度的方法,从高度异质的细胞群中分离出目标细胞。在迄今为止提出的各种细胞分离技术中,基于介电泳(DEP)的方法因其对细胞无损伤而显示出特别的前景。我们开发了一种新的基于 DEP 的设备,用于分离人类乳腺细胞系 MCF10A 的大量活细胞和死细胞。在这项研究中,我们验证了这种装置的分离性能。结果显示,成功分离的细胞比例高于以往的研究,分离效率高达 90% 以上。在过去的研究中,还没有同时实现超过 90% 的分离率和高速处理大量细胞的确凿案例。研究表明,所提出的设备可以高速、高精度地处理大量细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposal and performance evaluation of a new parallel plate continuous cell separation device using dielectrophoresis

Along with the rapid development of cellular biological research in recent years, there has been an urgent need for a high-speed, high-precision method of separating target cells from a highly heterogeneous cell population. Among the various cell separation technologies proposed so far, dielectrophoresis (DEP)-based approaches have shown particular promise because they are noninvasive to cells. We have developed a new DEP-based device to separate large numbers of live and dead cells of the human mammary cell line MCF10A. In this study, we validated the separation performance of this device. The results showed the successful separation of a higher percentage of cells than in previous studies, with a separation efficiency higher than 90%. In the past, there have been no confirmed cases in which a separation rate of over 90% and high-speed processing of a large number of cells were simultaneously achieved. It was shown that the proposed device can process large numbers of cells at high speed and with high accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
期刊最新文献
A Micro-Flow Liquid Chromatography-Mass Spectrometry Method for the Quantification of Oxylipins in Volume-Limited Human Plasma. Dynamics of Viscous Jeffrey Fluid Flow Through Darcian Medium With Hall Current and Quadratic Buoyancy. Enhanced Green Fluorescent Protein Streaming Dielectrophoresis in Insulator-Based Microfluidic Devices. Fatty Acid Analysis by Capillary Electrophoresis and Contactless Conductivity Detection for Future Life Detection Missions. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1