Dalal Nasser Binjawhar, Fawziah A Al-Salmi, Maha Ali Alghamdi, Ola A Abu Ali, Eman Fayad, Youstina William Rizzk, Nourhan M Ali, Ibrahim Mohey El-Deen, Elsayed H Eltamany
{"title":"含有 2-硫代海因分子的混合肉桂酸衍生物的体外抗乳腺癌研究。","authors":"Dalal Nasser Binjawhar, Fawziah A Al-Salmi, Maha Ali Alghamdi, Ola A Abu Ali, Eman Fayad, Youstina William Rizzk, Nourhan M Ali, Ibrahim Mohey El-Deen, Elsayed H Eltamany","doi":"10.1080/17568919.2024.2366694","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim</b>: To synthesize new hybrid cinnamic acids (<b>10a</b>, <b>10b</b> and <b>11</b>) and ester derivatives (<b>7</b>, <b>8</b> and <b>9</b>) and investigate their anti-breast cancer activities.<b>Materials & methods:</b> Compounds <b>7-11</b> were evaluated (<i>in vitro</i>) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted.<b>Results</b>: Several components were discovered to be active, mainly component <b>11</b>, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9.<b>Conclusion:</b> The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1665-1684"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370905/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In vitro</i> anti-breast cancer study of hybrid cinnamic acid derivatives bearing 2-thiohydantoin moiety.\",\"authors\":\"Dalal Nasser Binjawhar, Fawziah A Al-Salmi, Maha Ali Alghamdi, Ola A Abu Ali, Eman Fayad, Youstina William Rizzk, Nourhan M Ali, Ibrahim Mohey El-Deen, Elsayed H Eltamany\",\"doi\":\"10.1080/17568919.2024.2366694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim</b>: To synthesize new hybrid cinnamic acids (<b>10a</b>, <b>10b</b> and <b>11</b>) and ester derivatives (<b>7</b>, <b>8</b> and <b>9</b>) and investigate their anti-breast cancer activities.<b>Materials & methods:</b> Compounds <b>7-11</b> were evaluated (<i>in vitro</i>) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted.<b>Results</b>: Several components were discovered to be active, mainly component <b>11</b>, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9.<b>Conclusion:</b> The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1665-1684\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2366694\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2366694","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
目的:合成新的混合肉桂酸(10a、10b 和 11)和酯衍生物(7、8 和 9),并研究它们的抗乳腺癌活性。材料与方法:在体外评估了化合物 7-11 对 MCF-7 细胞系的细胞毒性活性。进行了流式细胞术检测。通过 qRT-PCR 检测了核因子红细胞 2 相关因子 2(Nrf2)、拓扑异构酶 II 和 caspase-9 的蛋白水平。进行了分子对接研究。结果:发现了几种具有活性的成分,主要是成分 11,它诱导细胞周期停滞在 S 期,大大降低了 Nrf2 和拓扑异构酶 II 的表达,并上调了 caspase-9 的表达。结论新发现的硫代海因-肉桂酸杂交化合物有助于创造有前景的候选抗癌药物。
In vitro anti-breast cancer study of hybrid cinnamic acid derivatives bearing 2-thiohydantoin moiety.
Aim: To synthesize new hybrid cinnamic acids (10a, 10b and 11) and ester derivatives (7, 8 and 9) and investigate their anti-breast cancer activities.Materials & methods: Compounds 7-11 were evaluated (in vitro) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted.Results: Several components were discovered to be active, mainly component 11, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9.Conclusion: The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.