{"title":"氧化应激通过上调HEXB诱导细胞外囊泡释放,从而促进实验性肝细胞癌的肿瘤生长。","authors":"Jiufei Duan, Zhao Huang, Siyuan Qin, Bowen Li, Zhe Zhang, Rui Liu, Kui Wang, Edouard C. Nice, Jingwen Jiang, Canhua Huang","doi":"10.1002/jev2.12468","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) play a crucial role in triggering tumour-aggressive behaviours. However, the energetic process by which tumour cells produce EVs remains poorly understood. Here, we demonstrate the involvement of <i>β</i>-hexosaminidase B (HEXB) in mediating EV release in response to oxidative stress, thereby promoting the development of hepatocellular carcinoma (HCC). Mechanistically, reactive oxygen species (ROS) stimulate the nuclear translocation of transcription factor EB (TFEB), leading to the upregulation of both HEXB and its antisense lncRNA HEXB-AS. HEXB-AS can bind HEXB to form a protein/RNA complex, which elevates the protein stability of HEXB. The stabilized HEXB interacts with lysosome-associated membrane glycoprotein 1 (LAMP1), disrupting lysosome-multivesicular body (MVB) fusion, which protects EVs from degradation. Knockdown of HEXB efficiently inhibits EV release and curbs HCC growth both in vitro and in vivo. Moreover, targeting HEXB by M-31850 significantly inhibits HCC growth, especially when combined with GW4869, an inhibitor of exosome release. Our results underscore the critical role of HEXB as a modulator that promotes EV release during HCC development.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 7","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214608/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress induces extracellular vesicle release by upregulation of HEXB to facilitate tumour growth in experimental hepatocellular carcinoma\",\"authors\":\"Jiufei Duan, Zhao Huang, Siyuan Qin, Bowen Li, Zhe Zhang, Rui Liu, Kui Wang, Edouard C. Nice, Jingwen Jiang, Canhua Huang\",\"doi\":\"10.1002/jev2.12468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular vesicles (EVs) play a crucial role in triggering tumour-aggressive behaviours. However, the energetic process by which tumour cells produce EVs remains poorly understood. Here, we demonstrate the involvement of <i>β</i>-hexosaminidase B (HEXB) in mediating EV release in response to oxidative stress, thereby promoting the development of hepatocellular carcinoma (HCC). Mechanistically, reactive oxygen species (ROS) stimulate the nuclear translocation of transcription factor EB (TFEB), leading to the upregulation of both HEXB and its antisense lncRNA HEXB-AS. HEXB-AS can bind HEXB to form a protein/RNA complex, which elevates the protein stability of HEXB. The stabilized HEXB interacts with lysosome-associated membrane glycoprotein 1 (LAMP1), disrupting lysosome-multivesicular body (MVB) fusion, which protects EVs from degradation. Knockdown of HEXB efficiently inhibits EV release and curbs HCC growth both in vitro and in vivo. Moreover, targeting HEXB by M-31850 significantly inhibits HCC growth, especially when combined with GW4869, an inhibitor of exosome release. Our results underscore the critical role of HEXB as a modulator that promotes EV release during HCC development.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"13 7\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12468\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12468","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Oxidative stress induces extracellular vesicle release by upregulation of HEXB to facilitate tumour growth in experimental hepatocellular carcinoma
Extracellular vesicles (EVs) play a crucial role in triggering tumour-aggressive behaviours. However, the energetic process by which tumour cells produce EVs remains poorly understood. Here, we demonstrate the involvement of β-hexosaminidase B (HEXB) in mediating EV release in response to oxidative stress, thereby promoting the development of hepatocellular carcinoma (HCC). Mechanistically, reactive oxygen species (ROS) stimulate the nuclear translocation of transcription factor EB (TFEB), leading to the upregulation of both HEXB and its antisense lncRNA HEXB-AS. HEXB-AS can bind HEXB to form a protein/RNA complex, which elevates the protein stability of HEXB. The stabilized HEXB interacts with lysosome-associated membrane glycoprotein 1 (LAMP1), disrupting lysosome-multivesicular body (MVB) fusion, which protects EVs from degradation. Knockdown of HEXB efficiently inhibits EV release and curbs HCC growth both in vitro and in vivo. Moreover, targeting HEXB by M-31850 significantly inhibits HCC growth, especially when combined with GW4869, an inhibitor of exosome release. Our results underscore the critical role of HEXB as a modulator that promotes EV release during HCC development.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.