{"title":"安装在自组装多肽上的 Au(I) 复合物可高效催化分子内环化反应。","authors":"Valentina Pirovano, Patrizia Brini, Elisa Brambilla, Maria Luisa Gelmi, Alessandra Romanelli","doi":"10.1002/psc.3630","DOIUrl":null,"url":null,"abstract":"<p>Self-assembled peptides are used for diverse applications in the biomedical and technological fields. The morphology and function of the assembled systems are dictated by the peptide sequence and length. In this work, a supramolecular catalyst was obtained upon self-assembly of the diphenylalanine peptide conjugated to a triphenylphosphine Au(I) complex in acetonitrile. The assembled molecules were characterized by spectroscopic techniques and by scanning electron microscopy. The activity of the catalyst was tested on two substrates in cyclization reactions. The morphology and the dimensions of the assembled systems vary depending on the presence of a carboxyl versus an amide C-terminal end. The catalyst efficiently promotes intramolecular cyclization reactions. Results obtained encourage the use of self-assembled peptides for the obtainment of new and efficient catalysts.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.3630","citationCount":"0","resultStr":"{\"title\":\"Au(I) complexes installed on a self-assembled peptide efficiently catalyze intramolecular cyclization reactions\",\"authors\":\"Valentina Pirovano, Patrizia Brini, Elisa Brambilla, Maria Luisa Gelmi, Alessandra Romanelli\",\"doi\":\"10.1002/psc.3630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-assembled peptides are used for diverse applications in the biomedical and technological fields. The morphology and function of the assembled systems are dictated by the peptide sequence and length. In this work, a supramolecular catalyst was obtained upon self-assembly of the diphenylalanine peptide conjugated to a triphenylphosphine Au(I) complex in acetonitrile. The assembled molecules were characterized by spectroscopic techniques and by scanning electron microscopy. The activity of the catalyst was tested on two substrates in cyclization reactions. The morphology and the dimensions of the assembled systems vary depending on the presence of a carboxyl versus an amide C-terminal end. The catalyst efficiently promotes intramolecular cyclization reactions. Results obtained encourage the use of self-assembled peptides for the obtainment of new and efficient catalysts.</p>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.3630\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.3630\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.3630","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
自组装肽可用于生物医学和技术领域的各种应用。组装系统的形态和功能由肽的序列和长度决定。在这项研究中,通过二苯丙氨酸肽与三苯基膦 Au(I)复合物在乙腈中的自组装,获得了一种超分子催化剂。通过光谱技术和扫描电子显微镜对组装的分子进行了表征。在两种底物的环化反应中测试了催化剂的活性。组装系统的形态和尺寸随 C 端羧基和酰胺的存在而变化。该催化剂能有效促进分子内环化反应。研究结果鼓励使用自组装肽来获得新型高效催化剂。
Au(I) complexes installed on a self-assembled peptide efficiently catalyze intramolecular cyclization reactions
Self-assembled peptides are used for diverse applications in the biomedical and technological fields. The morphology and function of the assembled systems are dictated by the peptide sequence and length. In this work, a supramolecular catalyst was obtained upon self-assembly of the diphenylalanine peptide conjugated to a triphenylphosphine Au(I) complex in acetonitrile. The assembled molecules were characterized by spectroscopic techniques and by scanning electron microscopy. The activity of the catalyst was tested on two substrates in cyclization reactions. The morphology and the dimensions of the assembled systems vary depending on the presence of a carboxyl versus an amide C-terminal end. The catalyst efficiently promotes intramolecular cyclization reactions. Results obtained encourage the use of self-assembled peptides for the obtainment of new and efficient catalysts.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.