Rachael D Seidler, Xiao Wen Mao, Grant D Tays, Tianyi Wang, Peter Zu Eulenburg
{"title":"太空飞行对大脑的影响","authors":"Rachael D Seidler, Xiao Wen Mao, Grant D Tays, Tianyi Wang, Peter Zu Eulenburg","doi":"10.1016/S1474-4422(24)00224-2","DOIUrl":null,"url":null,"abstract":"<p><p>The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.</p>","PeriodicalId":17989,"journal":{"name":"Lancet Neurology","volume":" ","pages":"826-835"},"PeriodicalIF":46.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of spaceflight on the brain.\",\"authors\":\"Rachael D Seidler, Xiao Wen Mao, Grant D Tays, Tianyi Wang, Peter Zu Eulenburg\",\"doi\":\"10.1016/S1474-4422(24)00224-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.</p>\",\"PeriodicalId\":17989,\"journal\":{\"name\":\"Lancet Neurology\",\"volume\":\" \",\"pages\":\"826-835\"},\"PeriodicalIF\":46.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/S1474-4422(24)00224-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/S1474-4422(24)00224-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.
期刊介绍:
The Lancet Neurology is the world-leading clinical neurology journal. It publishes original research that advocates for change in, or sheds light on, neurological clinical practice. The topics covered include cerebrovascular disease, Alzheimer's disease and other dementias, epilepsy, migraine, neurological infections, movement disorders, multiple sclerosis, neuromuscular disorders, peripheral nerve disorders, pediatric neurology, sleep disorders, and traumatic brain injury.
The journal publishes a range of article types, including Articles (including randomized clinical trials and meta-analyses), Review, Rapid Review, Comment, Correspondence, and Personal View. It also publishes Series and Commissions that aim to shape and drive positive change in clinical practice and health policy in areas of need in neurology.
The Lancet Neurology is an internationally trusted source of clinical, public health, and global health knowledge. It has an Impact Factor of 48.0, making it the top-ranked clinical neurology journal out of 212 journals worldwide.