Jiaxin Cheng , Chunhui Wu , Yu Wang , Zhen Wang , Yang He , Jingshan Shen
{"title":"用于治疗精神分裂症的新型 5-羟色胺-多巴胺受体调节剂 TPN672MA 的抗抑郁样作用和拟议作用机制。","authors":"Jiaxin Cheng , Chunhui Wu , Yu Wang , Zhen Wang , Yang He , Jingshan Shen","doi":"10.1016/j.pbb.2024.173809","DOIUrl":null,"url":null,"abstract":"<div><p>TPN672MA, an innovative antipsychotic drug candidate currently in clinical trials, acts as a dopamine D<sub>2</sub>/D<sub>3</sub> receptor partial agonist, serotonin 5-HT<sub>1A</sub> receptor agonist, and serotonin 5-HT<sub>2A</sub> receptor antagonist. Preclinical investigations have demonstrated its potential in treating the core symptoms of schizophrenia. The present study highlights TPN672MA’s significant antidepressant-like effects in classical behavioral models, such as the chronic social defeat stress paradigm. The pronounced 5-HT<sub>1A</sub> receptor agonism and D<sub>2</sub>/D<sub>3</sub> receptor partial agonism of TPN672MA likely contribute to its therapeutic effects in depression. Additionally, TPN672MA’s antidepressant-like efficacy may be linked to its ability to enhance the expression levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein-95 (PSD95) in the hippocampus. Furthermore, TPN672MA displayed a more rapid onset of antidepressant-like action. In conclusion, TPN672MA represents a promising new drug candidate for the treatment of symptoms of schizophrenia and depression.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"242 ","pages":"Article 173809"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The antidepressant-like effect and proposed mechanism of action of TPN672MA, a novel serotonin-dopamine receptor modulator for the treatment of schizophrenia\",\"authors\":\"Jiaxin Cheng , Chunhui Wu , Yu Wang , Zhen Wang , Yang He , Jingshan Shen\",\"doi\":\"10.1016/j.pbb.2024.173809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>TPN672MA, an innovative antipsychotic drug candidate currently in clinical trials, acts as a dopamine D<sub>2</sub>/D<sub>3</sub> receptor partial agonist, serotonin 5-HT<sub>1A</sub> receptor agonist, and serotonin 5-HT<sub>2A</sub> receptor antagonist. Preclinical investigations have demonstrated its potential in treating the core symptoms of schizophrenia. The present study highlights TPN672MA’s significant antidepressant-like effects in classical behavioral models, such as the chronic social defeat stress paradigm. The pronounced 5-HT<sub>1A</sub> receptor agonism and D<sub>2</sub>/D<sub>3</sub> receptor partial agonism of TPN672MA likely contribute to its therapeutic effects in depression. Additionally, TPN672MA’s antidepressant-like efficacy may be linked to its ability to enhance the expression levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein-95 (PSD95) in the hippocampus. Furthermore, TPN672MA displayed a more rapid onset of antidepressant-like action. In conclusion, TPN672MA represents a promising new drug candidate for the treatment of symptoms of schizophrenia and depression.</p></div>\",\"PeriodicalId\":19893,\"journal\":{\"name\":\"Pharmacology Biochemistry and Behavior\",\"volume\":\"242 \",\"pages\":\"Article 173809\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Biochemistry and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091305724001035\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305724001035","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The antidepressant-like effect and proposed mechanism of action of TPN672MA, a novel serotonin-dopamine receptor modulator for the treatment of schizophrenia
TPN672MA, an innovative antipsychotic drug candidate currently in clinical trials, acts as a dopamine D2/D3 receptor partial agonist, serotonin 5-HT1A receptor agonist, and serotonin 5-HT2A receptor antagonist. Preclinical investigations have demonstrated its potential in treating the core symptoms of schizophrenia. The present study highlights TPN672MA’s significant antidepressant-like effects in classical behavioral models, such as the chronic social defeat stress paradigm. The pronounced 5-HT1A receptor agonism and D2/D3 receptor partial agonism of TPN672MA likely contribute to its therapeutic effects in depression. Additionally, TPN672MA’s antidepressant-like efficacy may be linked to its ability to enhance the expression levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein-95 (PSD95) in the hippocampus. Furthermore, TPN672MA displayed a more rapid onset of antidepressant-like action. In conclusion, TPN672MA represents a promising new drug candidate for the treatment of symptoms of schizophrenia and depression.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.