{"title":"在兔子模型中,PET-基质复合贴片可增强肌腱再生和肌腱与骨骼的整合,用于慢性大面积肩袖撕裂的桥接修复。","authors":"Yuyan Na, Hao Jue, Tian Xia, Moxin Li, Xiaoao Xue, Yinghui Hua","doi":"10.1093/rb/rbae061","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, bridging repair has emerged as an effective approach for the treatment of massive rotator cuff tears (MRCTs). The objective of this study was to develop a composite patch that combines superior mechanical strength and biocompatibility and evaluate its potential for enhancing the outcomes of bridging repair for MRCTs. The composite patch, referred to as the PET-matrix patch (PM), was fabricated by immersing a plain-woven PET patch in decellularized matrix gel and utilizing the freeze-drying technique. The results demonstrated that the PM has reliable mechanical properties, with a maximum failure load of up to 480 N. The decellularized matrix sponge (DMS), present on the surface of the PM, displayed a loose and porous structure, with an average pore size of 62.51 μm and a porosity of 95.43%. <i>In vitro</i> experiments showed significant elongation of tenocytes on the DMS, with cells spanning across multiple pores and extending multiple protrusions as observed on SEM images. In contrast, tenocytes on the PET patch appeared smaller in size and lacked significant elongation. Additionally, the DMS facilitated the proliferation, migration and differentiation of tenocytes. In a rabbit model of chronic MRCTs, the PM group showed superior outcomes compared to the PET group at 4, 8 and 12 weeks after bridging repair. The PM group displayed significantly higher tendon maturing score, larger collagen diameter in the regenerated tendon and improved tendon-to-bone healing scores compared to the PET group (<i>P </i><<i> </i>0.05). Moreover, the maximum failure load of the tendon-bone complex in the PM group was significantly higher than that in the PET group (<i>P </i><<i> </i>0.05). In summary, the PM possesses reliable mechanical properties and excellent cytocompatibility, which can significantly improve the outcomes of bridging repair for chronic MRCTs in rabbits. Therefore, it holds great potential for clinical applications.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae061"},"PeriodicalIF":5.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211210/pdf/","citationCount":"0","resultStr":"{\"title\":\"A composite PET-matrix patch enhances tendon regeneration and tendon-to-bone integration for bridging repair of the chronic massive rotator cuff tears in a rabbit model.\",\"authors\":\"Yuyan Na, Hao Jue, Tian Xia, Moxin Li, Xiaoao Xue, Yinghui Hua\",\"doi\":\"10.1093/rb/rbae061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, bridging repair has emerged as an effective approach for the treatment of massive rotator cuff tears (MRCTs). The objective of this study was to develop a composite patch that combines superior mechanical strength and biocompatibility and evaluate its potential for enhancing the outcomes of bridging repair for MRCTs. The composite patch, referred to as the PET-matrix patch (PM), was fabricated by immersing a plain-woven PET patch in decellularized matrix gel and utilizing the freeze-drying technique. The results demonstrated that the PM has reliable mechanical properties, with a maximum failure load of up to 480 N. The decellularized matrix sponge (DMS), present on the surface of the PM, displayed a loose and porous structure, with an average pore size of 62.51 μm and a porosity of 95.43%. <i>In vitro</i> experiments showed significant elongation of tenocytes on the DMS, with cells spanning across multiple pores and extending multiple protrusions as observed on SEM images. In contrast, tenocytes on the PET patch appeared smaller in size and lacked significant elongation. Additionally, the DMS facilitated the proliferation, migration and differentiation of tenocytes. In a rabbit model of chronic MRCTs, the PM group showed superior outcomes compared to the PET group at 4, 8 and 12 weeks after bridging repair. The PM group displayed significantly higher tendon maturing score, larger collagen diameter in the regenerated tendon and improved tendon-to-bone healing scores compared to the PET group (<i>P </i><<i> </i>0.05). Moreover, the maximum failure load of the tendon-bone complex in the PM group was significantly higher than that in the PET group (<i>P </i><<i> </i>0.05). In summary, the PM possesses reliable mechanical properties and excellent cytocompatibility, which can significantly improve the outcomes of bridging repair for chronic MRCTs in rabbits. Therefore, it holds great potential for clinical applications.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae061\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211210/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae061\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae061","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
近年来,桥接修复已成为治疗大面积肩袖撕裂(MRCT)的一种有效方法。本研究旨在开发一种兼具超强机械强度和生物相容性的复合补片,并评估其提高桥接修复 MRCT 效果的潜力。该复合补片被称为 PET 基质补片(PM),是通过将平织 PET 补丁浸入脱细胞基质凝胶中并利用冷冻干燥技术制成的。结果表明,PM 具有可靠的机械性能,最大破坏载荷可达 480 N。PM表面的脱细胞基质海绵(DMS)呈现出疏松多孔的结构,平均孔径为62.51微米,孔隙率为95.43%。体外实验显示,DMS 上的腱细胞有明显的伸长现象,从扫描电镜图像上观察到细胞跨越多个孔,并延伸出多个突起。相比之下,PET 贴片上的腱细胞体积较小,没有明显的伸长。此外,DMS 还能促进腱细胞的增殖、迁移和分化。在慢性 MRCT 兔子模型中,桥接修复后 4、8 和 12 周,PM 组的效果优于 PET 组。与 PET 组相比,PM 组的肌腱成熟评分明显更高,再生肌腱的胶原直径更大,肌腱与骨愈合评分也有所改善(P 0.05)。此外,PM 组肌腱-骨复合体的最大破坏载荷明显高于 PET 组(P 0.05)。总之,PM 具有可靠的机械性能和良好的细胞相容性,能明显改善兔子慢性 MRCT 桥接修复的效果。因此,它在临床应用方面具有很大的潜力。
A composite PET-matrix patch enhances tendon regeneration and tendon-to-bone integration for bridging repair of the chronic massive rotator cuff tears in a rabbit model.
In recent years, bridging repair has emerged as an effective approach for the treatment of massive rotator cuff tears (MRCTs). The objective of this study was to develop a composite patch that combines superior mechanical strength and biocompatibility and evaluate its potential for enhancing the outcomes of bridging repair for MRCTs. The composite patch, referred to as the PET-matrix patch (PM), was fabricated by immersing a plain-woven PET patch in decellularized matrix gel and utilizing the freeze-drying technique. The results demonstrated that the PM has reliable mechanical properties, with a maximum failure load of up to 480 N. The decellularized matrix sponge (DMS), present on the surface of the PM, displayed a loose and porous structure, with an average pore size of 62.51 μm and a porosity of 95.43%. In vitro experiments showed significant elongation of tenocytes on the DMS, with cells spanning across multiple pores and extending multiple protrusions as observed on SEM images. In contrast, tenocytes on the PET patch appeared smaller in size and lacked significant elongation. Additionally, the DMS facilitated the proliferation, migration and differentiation of tenocytes. In a rabbit model of chronic MRCTs, the PM group showed superior outcomes compared to the PET group at 4, 8 and 12 weeks after bridging repair. The PM group displayed significantly higher tendon maturing score, larger collagen diameter in the regenerated tendon and improved tendon-to-bone healing scores compared to the PET group (P <0.05). Moreover, the maximum failure load of the tendon-bone complex in the PM group was significantly higher than that in the PET group (P <0.05). In summary, the PM possesses reliable mechanical properties and excellent cytocompatibility, which can significantly improve the outcomes of bridging repair for chronic MRCTs in rabbits. Therefore, it holds great potential for clinical applications.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.